\(9x^2+10x-1\)

b) \(2x^2-6x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

a) \(=\left(9x^2+2.3.\frac{5}{3}x+\frac{25}{9}\right)-\frac{34}{9}=\left(3x+\frac{5}{3}\right)^2-\frac{34}{9}\ge-\frac{34}{9}\Rightarrow Min=-\frac{34}{9}\Leftrightarrow x=-\frac{5}{9}\)

b) \(=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\Rightarrow Min=-\frac{9}{2}\Leftrightarrow x=\frac{3}{2}\)

13 tháng 2 2017

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

17 tháng 12 2019

a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)

\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)

\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)

\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)

\(=\frac{2x-7-5+3x}{10x-4}\)

\(=\frac{5x-12}{10x-4}\)

11 tháng 3 2020
https://i.imgur.com/VA6hXtR.jpg
9 tháng 8 2018

tìm tử thức là 2 ko đổi để bt A có GTNN khi mẫu thức \(6x-5-9x^2\)có GTLN mà\(6x-5-9x^2=-(9x^2-6x-5)=-3(3x^2-2x+\frac{5}{3})\)\(=-3[(3x^2-2x\frac{1}{2}+\frac{1}{4})-\frac{1}{4}+\frac{5}{3}]\)    \(=-3[(3x-\frac{1}{2})^2+\frac{17}{12}=-\frac{17}{4}-3(3x-\frac{1}{2})^2\)vì \((3x-\frac{1}{2})^2\ge0\forall x\Rightarrow6x-5-9x^2=-\frac{17}{4}-3(3x-\frac{1}{2})^2\le-\frac{17}{4}\)vậy GTLN \((6x-5-9x^2)\)bằng \(-\frac{17}{4}\)đạt được khi \((3x-\frac{1}{2})^2=0\Rightarrow x=\frac{1}{6}\Rightarrow\)\(A\ge\frac{2}{\frac{-17}{4}}=2\times\frac{-17}{4}=-\frac{17}{2}\)                             vậy MIN \((A)=-\frac{17}{2}\)đạt được \(\Leftrightarrow x=\frac{1}{6}\)

30 tháng 7 2017

a)\(2x^2-4x+7=2x^2-4x+2+5=2\left(x^2-2x+1\right)+5=2\left(x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=1

b)\(9x^2-6x+5=\left(3x\right)^2-2.3x.1+1+4=\left(3x-1\right)^2+4\ge5\)

Dấu "=" xảy ra khi x=1/3

c)\(3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left(x^2-2.\frac{5}{6}.x+\frac{25}{36}-\frac{1}{36}\right)\)

\(=3\left[\left(x-\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Dấu "=" xảy ra khi x=5/6

mấy câu sau tương tự

30 tháng 7 2017

a) 2x2-4x+7=(2x2-2.2x.1+1)+6=(2x-1)2+6

Vì (2x-1)2 >_(lớn hơn hoặc bằng) 0

=>(2x-1)2+6>_6

=> GTNN của 2x2-4x+7=6

b, 9x2-6x+5=[(3x)2-2.3x.1+1]+4=(3x-1)2+4

Vì (3x-1)2>_0

=>(3x-1)2+4>_4

=> GTNN của 9x2-6x+5=4

20 tháng 9 2016

a) \(A=\left(x^2-10x+25\right)\)\(-28\)

   \(A=\left(x-5\right)^2-28\)\(>=\)-28

MinA = -28 <=> x-5=0 <=> x=5

b)\(B=-\left(x^2+2x+1\right)+6\)

   \(B=-\left(x+1\right)^2+6\)\(< =\)6

MaxB = 6 <=> x+1=0 <=> x=-1

c)\(C=-5\left(x^2-\frac{6}{5}x+\frac{9}{25}\right)-\frac{26}{5}\)

   \(C=-5\left(x-\frac{3}{5}\right)^2-\frac{26}{5}\)\(< =-\frac{26}{5}\)

MaxC = \(-\frac{26}{5}\)<=> \(x-\frac{3}{5}=0\)<=> x=\(\frac{3}{5}\)

d)\(D=-3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)+\frac{61}{12}\)

\(D=-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\)\(< =\frac{61}{12}\)

MacD = \(\frac{61}{12}\)<=> \(x+\frac{1}{6}=0\)<=> \(x=\frac{-1}{6}\)

Đúng thì nhớ tích cho minh nha