K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

a) \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)

Vì: \(\left(x+1\right)^2\ge0\) , với mọi x

=> \(\left(x+1\right)^2+1\ge1\)

Vậy GTNN của bt đã cho là 1 khi \(x+1=0\Leftrightarrow x=-1\)

b) \(4x^2-x+1=4\left(x^2-\frac{x}{4}+\frac{1}{64}\right)+\frac{15}{16}=4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\)

Vì: \(4\left(x-\frac{1}{8}\right)^2\ge0\), vói mọi x

=> \(4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)

Vậy GTNN của bt trên là \(\frac{15}{16}\) khi \(x=\frac{1}{8}\)

c) \(3x^2-2x+1=3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{2}{3}=3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\)

Vì: \(3\left(x-\frac{1}{3}\right)^2\ge0\), với mọi x

=> \(3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

Vậy GTNN của bt đã cho là \(\frac{2}{3}\) khi \(x=\frac{1}{3}\)

24 tháng 12 2019

                                                            Bài giải

a, Ta có : \(A=\frac{x^2-2+1995}{x^2}=\frac{x^2}{x^2}-\frac{2+1995}{x^2}=1-\frac{1997}{x^2}\)

\(A\text{ đạt GTNN khi }\frac{1997}{x^2}\text{ đạt GTLN}\)

\(\Rightarrow\text{ }x^2\text{ nhỏ nhất }\left(x\ne0\right)\) Mà \(x^2\ge0\text{ }\Rightarrow\text{ }x^2=1\text{ }\Rightarrow\text{ }x\in\left\{\pm1\right\}\)

\(\Rightarrow\text{ Min A }=1-\frac{1997}{1}=1-1997=-1996\)

12 tháng 9 2015

\(a,\text{ }x^2+x+1=x+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\text{Vì }\left(x+\frac{1}{2}\right)^2\ge0\text{ với mọi x nên: }\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\text{ với mọi x}\)

\(\text{Vậy GTNN của }x^2+x+1\text{ là }\frac{3}{4}\text{ tại }x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

\(b,2x^2+2x+1=2.\left(x^2+x+\frac{1}{2}\right)=2.\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(=2.\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}=2.\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)

\(\text{Vì }2.\left(x+\frac{1}{2}\right)^2\ge0\text{ nên: }2.\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

\(\text{Vậy GTNN của }2x^2+2x+1\text{ là }\frac{1}{2}\text{ tại }x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

27 tháng 8 2016

=4x2-4x+1+x2+4x+4

=5x2+5>hoặc =5

vậy gtnn la 5

27 tháng 8 2016

( 2x - 1 ) + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 > hoặc = 5

Vậy GTNN la 5 

9 tháng 7 2017

tìm GTNN:

a) \(x^2-2x+5\)

\(=x^2-2x+4+1\)

\(=\left(x-2\right)^2+1\ge1\)

vậy GTNN của biểu thức trên =1 khi x=2

9 tháng 7 2017

a) Ta có : x2 - 2x + 5

= x2 - 2x + 1 + 4

= (x - 1)2 + 4

Mà (x - 1)2 \(\ge0\forall x\)

=> (x - 1)2 + 4 \(\ge4\forall x\)

Vậy GTNN của biểu thức là 4 khi x = 1

14 tháng 10 2018

Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3

14 tháng 10 2018

ko tra loi duoc thi dung noi lung tung

16 tháng 9 2017

giúp mk vs nha , mk đăng cần rất gấp

16 tháng 9 2017

mình hk bít vít