\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

Thêm đk: x;y>0

\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)

\(\Leftrightarrow P=\frac{x^2}{y^2}+1+\frac{y^2}{x^2}+1-3\left(\frac{x}{y}+\frac{y}{x}\right)\)

Áp dụng BĐT AM-GM ta có:

\(P\ge2\left(\frac{x}{y}+\frac{y}{x}\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+3\)

\(P\ge\left(\frac{x}{y}+\frac{y}{x}\right)\left(2-3\right)+3\)

\(P\ge2\left(2-3\right)+3=1\)

Dấu " = " xảy ra <=> x=y=1

30 tháng 3 2017

khó thật

30 tháng 3 2017

Áp dụng BĐT AM-GM ta có: 

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\Rightarrow3\left(\frac{x}{y}+\frac{y}{x}\right)\ge6\)

Cộng theo vế 2 BĐT trên ta có:\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge2-6=-4 \)

\(\Rightarrow P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\ge-4+5=1\)

Đẳng thức xảy ra khi \(x=y\)

NV
30 tháng 5 2020

Cần điều kiện x;y dương

\(M=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)

\(M\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)

\(M_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)

NV
9 tháng 5 2020

Đặt \(t=\frac{x}{y}+\frac{y}{x}>0\Rightarrow t^2=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4\ge4\Rightarrow t\ge2\)

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)

\(\Rightarrow B=2\left(t^2-2\right)-5t+6=2t^2-5t+2\)

\(B=\left(2t-1\right)\left(t-2\right)\)

Do \(t\ge2\Rightarrow\left\{{}\begin{matrix}2t-1>0\\t-2\ge0\end{matrix}\right.\) \(\Rightarrow B\ge0\)

\(B_{min}=0\) khi \(t=2\) hay \(x=y\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

6 tháng 3 2018

\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)

\(P=\left(\frac{x}{y}\right)^2+\left(\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)

\(P=\left(\frac{x}{y}+\frac{y}{x}\right)^2-2\left(\frac{x}{y}+\frac{y}{x}\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)

\(P=\left(\frac{x}{y}+\frac{y}{x}\right)^2-5\left(\frac{x}{y}+\frac{y}{x}\right)+5\)

\(P=\left(\frac{x}{y}+\frac{y}{x}\right)^2+5.\left(\frac{x}{y}+\frac{y}{x}-1\right)\)

6 tháng 3 2018

Bn lm kĩ hơn đc k. Mk chưa hiểu lắm

theo nghiệm Fx=Gx mũ 2 

suy ra x mũ 2 +1 mũ x 2 

suy ra chịch chịch chịch

31 tháng 5 2020

nguuuuuuuuuuuuuuuu

29 tháng 11 2016

\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)

\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)

\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)

\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)

\(=\frac{2005\times2010-6}{2005\times2011}\)

\(=\frac{2004}{2005}\)