Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?
Ta có:
\(\frac{a}{b^2+1}=\frac{a\left(b^2+1\right)-ab^2}{b^2+1}=a-\frac{ab^2}{b^2+1}\)
Nhận xét: a,b,c không âm nên theo BĐT Cô - si, ta có:
\(b^2+1\ge2\sqrt{b^2.1}=2b\)
=> \(\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)
=> \(a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)
=> \(\frac{a}{b^2+1}\ge a-\frac{ab}{2}\)
Tương tự, ta cũng có:
\(\frac{b}{c^2+1}\ge b-\frac{bc}{2}\)
\(\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)
Vậy ta suy ra
\(M=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\)
Mà a+b+c = 3 nên suy ra:
\(M\ge3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ac}{2}\right)\)(1)
Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
<=> \(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
<=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
<=> \(a^2+b^2+c^2\ge ab+ac+bc\)
<=> \(a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3ab+3ac+3bc\)
<=> \(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
<=> \(3^2\ge3\left(ab+ac+bc\right)\)
<=> \(ab+ac+bc\le3\)
<=> \(\frac{ab+ac+bc}{2}\le\frac{3}{2}\)
<=> \(3-\frac{ab+ac+bc}{2}=3-\frac{3}{2}=\frac{3}{2}\) (2)
Từ 1 và 2 => \(M\ge\frac{3}{2}\)
Dấu bằng xảy ra <=> a=b=c=1
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Ta có :
\(M=\left(a+1\right)\left(1+\frac{a}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)
\(=2+\frac{a}{b}+\frac{b}{a}+a+b+\frac{1}{a}+\frac{1}{b}\ge2+2+a+b+\frac{4}{a+b}\)
\(=4+a+b+\frac{2}{a+b}+\frac{2}{a+b}\ge4+2\sqrt{\left(a+b\right)\frac{2}{a+b}}+\frac{2}{\sqrt{2\left(a^2-b^2\right)}}=4+3\sqrt{2}\)
Vậy \(_{Min}M=4+3\sqrt{2}\)khi \(a=b=\frac{1}{\sqrt{2}}\)
ĐKXĐ: \(x\ge0\)
a/ \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x+1>0\end{matrix}\right.\) \(\Rightarrow B=\frac{\sqrt{x}}{x+1}\ge0\)
\(B_{min}=0\) khi \(x=0\)
\(B-\frac{1}{2}=\frac{\sqrt{x}}{x+1}-\frac{1}{2}=-\frac{x-2\sqrt{x}+1}{x+1}=-\frac{\left(\sqrt{x}-1\right)^2}{x+1}\le0\)
\(\Rightarrow B\le\frac{1}{2}\Rightarrow B_{max}=\frac{1}{2}\) khi \(x=1\)
b/ Tương tự câu a \(M_{min}=0\)
\(M=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{x+2\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}\le1\)
\(M_{max}=1\) khi \(x=1\)
Lời giải:
\(A=\sqrt{x^2-4x+7}=\sqrt{x^2-4x+4+3}=\sqrt{(x-2)^2+3}\)
Vì \((x-2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A=\sqrt{(x-2)^2+3}\geq \sqrt{0+3}=\sqrt{3}\)
Vậy GTNN của $A$ là $\sqrt{3}$ khi $(x-2)^2=0$ hay $x=2$
----------------
\(B=1+\sqrt{2x-x^2+1}=1+\sqrt{2-(x^2-2x+1)}\)
\(=1+\sqrt{2-(x-1)^2}\)
Vì \((x-1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow 2-(x-1)^2\leq 2\)
\(\Rightarrow B=1+\sqrt{2-(x-1)^2}\leq 1+\sqrt{2}\)
Vậy GTLN của $B$ là $1+\sqrt{2}$. Dấu "=" xảy ra khi \((x-1)^2=0\) hay $x=1$
Max nè : \(\frac{2m+1}{m^2+2}=\frac{m^2+2-m^2+2m-1}{m^2+2}=1+\frac{-\left(m-2\right)^2}{m^2+2}\le1\)
Min nhé: \(\frac{2m+1}{m^2+2}=\frac{4m+2}{2m^2+4}=\frac{-m^2-2+m^2+4m+4}{2\left(m^2+2\right)}\ge-\frac{1}{2}\)
Dấu bằng xảy ra : Max m=2, Min m =-2