Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)
Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)
Vậy Min A = -1 <=> X = -1/6
a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)
Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6
a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)
Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).
b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)
Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).
\(A=\frac{x-3}{x+2}=\frac{x+2-5}{x+2}=\frac{x+2}{x+2}-\frac{5}{x+2}=1-\frac{5}{x+2}\)
để A đạt gtnn thì \(\frac{5}{x+2}\) lớn nhất
=> x + 2 là số nguyên dương nhỏ nhất
=> x + 2 = 1
=> x = -3
vậy___
\(C=5+3\left(2x-1\right)^2\)
\(=5+3\left(3x-1\right)^2\ge5\)
\(Min=5\Leftrightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)