Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,1,A=\(\sqrt{2x^2-8x+17}\)=\(\sqrt{2\left(x^2-4x+4\right)+9}\)=\(\sqrt{2\left(x-2\right)^2+9}\)
Có \(\left(x-2\right)^2\ge0\) vs mọi x
=> \(2\left(x-2\right)^2+9\ge9\) vs mọi x
<=> \(A=\sqrt{2\left(x-2\right)^2+9}\ge\sqrt{9}=3\)
Dấu "=" xảy ra <=> x=2
Vậy min A=3 <=> x=2
2,C=\(x-2\sqrt{x-4}+3\)( x\(\ge4\))
= \(\left(x-4\right)-2\sqrt{x-4}+1+6\)
=\(\left(\sqrt{x-4}-1\right)^2+6\)
Có \(\left(\sqrt{x-4}-1\right)^2\ge0\) với mọi \(x\ge4\)
=> C= \(\left(\sqrt{x-4}-1\right)^2+6\ge6\) với mọi x\(\ge4\)
Dấu "=" xảy ra <=> \(\sqrt{x-4}=1\) <=> \(x=5\) (t/m)
Vậy minC=6 <=>x=5
3,D=\(\sqrt{3x^2-12x+16}+\sqrt{x^4-8x^2+17}\)
=\(\sqrt{3\left(x^2-4x+4\right)+4}+\sqrt{x^4-8x^2+16+1}\)
=\(\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\)
Có \(\sqrt{3\left(x-2\right)^2+4}\ge\sqrt{0+4}=2\)
\(\sqrt{\left(x^2-4\right)^2+1}\ge\sqrt{0+1}=1\)
=> \(D=\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\ge2+1\)
<=> D \(\ge3\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-2=0\\x^2-4=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\x^2=4\end{matrix}\right.\) (t/m)
=> x=2
Vậy minD=3 <=>x=2
b, B=\(\sqrt{-3x^2+18x+22}=\sqrt{49-3\left(x^2-6x+9\right)}=\sqrt{49-3\left(x-3\right)^2}\)
Có \(3\left(x-3\right)^2\ge0\) vs mọi x
<=> 49\(-3\left(x-3\right)^2\le49\) vs mọi x
<=> \(\sqrt{49-3\left(x-3\right)^2}\le\sqrt{49}=7\)
<=> B\(\le7\)
Dấu "=" xảy ra <=> x=3
Vậy max B=7 <=> x=3
1) ĐK: \(x\ge0\)
PT \(\Leftrightarrow\frac{2}{3}\sqrt{12x}+\sqrt{12x}-\frac{1}{3}\sqrt{3x}=9\)
\(\Leftrightarrow\frac{5}{3}\sqrt{12x}-\frac{1}{3}\sqrt{3x}=9\)
\(\Leftrightarrow3\sqrt{3x}=9\) \(\Leftrightarrow x=3\left(TM\right)\)
Vậy \(x=3\)
2) ĐK: \(x\ge0\)
PT \(\Leftrightarrow7\sqrt{2x}=14\) \(\Leftrightarrow x=2\left(TM\right)\)
Vậy \(x=2\)
a.\(\sqrt{x-2}=\sqrt{4-x}\)
đk: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\Leftrightarrow2\le x\le4\)
pt đã cho tương đương với
\(x-2=4-x\)
\(\Leftrightarrow2x=6\Rightarrow x=3\left(TM\right)\)
b.\(\sqrt{x^2-8x+6}=x+2\)
đk: \(x+2\ge0\Rightarrow x\ge-2\)
pt đã cho tương đương với
\(x^2-8x+6=\left(x+2\right)^2\)
\(\Leftrightarrow x^2-8x+6=x^2+4x+4\)
\(\Leftrightarrow-12x=-2\Rightarrow x=\frac{1}{6}\left(TM\right)\)
c.\(\sqrt{2x-1}+5=\sqrt{8x-4}\)
\(\Leftrightarrow\sqrt{2x-1}+5=\sqrt{4\left(2x-1\right)}\)
\(\Leftrightarrow\sqrt{2x-1}+5=2\sqrt{2x-1}\)
\(\Leftrightarrow\sqrt{2x-1}=5\)
đk: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)
pt tương đương: \(2x-1=25\)
\(\Leftrightarrow2x=26\Rightarrow x=13\left(TM\right)\)
d.\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow\sqrt{16\left(1-2x\right)}-\sqrt{4.3x}=\sqrt{3x}+\sqrt{9\left(1-2x\right)}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
đk: \(\left\{{}\begin{matrix}1-2x\ge0\\3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{1}{2}\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\frac{1}{2}\)
pt tương đương: \(1-2x=9.3x\)
\(\Leftrightarrow29x=1\Rightarrow x=\frac{1}{29}\left(TM\right)\)
e. \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
đk: \(\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ge0\\4x-12\ge0\end{matrix}\right.\Leftrightarrow x\ge3\)
pt đã cho tương đương với
\(\sqrt{\left(x-3\right)\left(x+3\right)}-\sqrt{4\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-3}.\sqrt{x+3}-2\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\left(TM\right)\\\sqrt{x+3}=2\Leftrightarrow x+3=4\Rightarrow x=1\left(KTM\right)\end{matrix}\right.\)
\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
\(\sqrt{x-4}+\sqrt{6+x}=x^2-10x+27\left(4_{ }< x< 6\right)\)
a) Điều kiện: \(2,5\ge x\ge1,5\)
Áp dụng bất đẳng thức cauchy, ta có:
\(VT\ge\dfrac{2x-3+1+5-2x+1}{2}=2\)
Mà \(VP=3\left(x-2\right)^2+2\ge2\)
Đẳng thức xảy ra khi và chỉ khi x = 2
b) Link tham khảo: https://diendantoanhoc.net/topic/72109-gi%E1%BA%A3i-pt-sqrt-x-4-sqrt-6-x-x2-10x-27/
Lời giải:
a) ĐK: $x\geq 2$
PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-3\sqrt{x-2}=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-3)=0$
\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=7\end{matrix}\right.\) (thỏa mãn)
Vậy..........
b) ĐK: $x\geq 0$
PT $\Leftrightarrow (\sqrt{x}-3)^2=0$
$\Leftrightarrow \sqrt{x}-3=0$
$\Leftrightarrow x=9$ (thỏa mãn)
c) ĐK: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4(x-3)}=7$
$\Leftrightarrow 3\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=7$
$\Leftrightarrow 3\sqrt{x-3}=7$
$\Leftrightarrow x-3=(\frac{7}{3})^2$
$\Rightarrow x=\frac{76}{9}$
d)
ĐK: $x\geq \frac{-1}{2}$
PT $\Leftrightarrow 3\sqrt{4(2x+1)}-\frac{1}{3}\sqrt{9(2x+1)}-\frac{1}{2}\sqrt{25(2x+1)}+\sqrt{\frac{1}{4}(2x+1)}=6$
$\Leftrightarrow 6\sqrt{2x+1}-\sqrt{2x+1}-\frac{5}{2}\sqrt{2x+1}+\frac{1}{2}\sqrt{2x+1}=6$
$\Leftrightarrow 3\sqrt{2x+1}=6$
$\Leftrightarrow \sqrt{2x+1}=2$
$\Rightarrow x=\frac{3}{2}$ (thỏa mãn)