![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Q=\sqrt{x^2-4x+4}+\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\)
\(\Leftrightarrow\left|x+2\right|+\left|2-x\right|\ge\left|x+2+2-x\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+2\le0\\2-x\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-2\\x\le2\end{cases}}\) hoặc \(\orbr{\begin{cases}x\le-2\\x\ge2\end{cases}}\left(vo-ly\right)\)
Vậy minQ = 4 \(\Leftrightarrow-2\le x\le2\)
Bài 1 :
ĐKXĐ : \(x\ge2\)
\(2x+5=6\sqrt{2x-4}\)
\(\Leftrightarrow4x^2+20x+25=36\left(2x-4\right)\)
\(\Leftrightarrow4x^2+20x+25-72x+144=0\)
\(\Leftrightarrow4x^2-52x+159=0\)
Đến đây chịu :))
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
x2 +4x + 4= (x + 2)2
X2 - 4x + 4 = (x - 2)2
Suy ra, ta có Q = x + 2 + x - 2 = 2x
\(Q=\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
\(=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-2\right)^2}\)
\(=|x+2|+|x-2|\)
\(=|x+2|+|2-x|\ge|x+2+2-x|=4\)
\(\Rightarrow Q_{min}=4\)\(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)
Th1 : \(\hept{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x\le2\end{cases}\Rightarrow-2\le x\le}2}\)
Th2 : \(\hept{\begin{cases}x+2< 0\\2-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>2\end{cases}\Rightarrow}x\in\varnothing}\)
Vậy \(Q_{min}=4\Leftrightarrow-2\le x\le2\)