K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(A=3x^2-6x+5\)

\(=3\left(x^2-2x+\frac{5}{3}\right)\)

\(=3\left(x^2-2x+1+\frac{2}{3}\right)\)

\(=3\left(x-1\right)^2+2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x-1\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

Vậy: Giá trị nhỏ nhất của biểu thức \(A=3x^2-6x+5\) là 2 khi x=1

b) Ta có: \(4x^2-12x+35\)

\(=4\left(x^2-3x+\frac{35}{4}\right)\)

\(=4\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{26}{4}\right)\)

\(=4\left(x-\frac{3}{2}\right)^2+26\)

Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow4\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow4\left(x-\frac{3}{2}\right)^2+26\ge26\forall x\)

\(\Rightarrow4x^2-12x+35\ge26\forall x\)

\(\Rightarrow\frac{5}{4x^2-12x+35}\le\frac{5}{26}\forall x\)

\(\Rightarrow\frac{-5}{4x^2-12x+35}\ge\frac{-5}{26}\forall x\)

Dấu '=' xảy ra khi \(x-\frac{3}{2}=0\)

hay \(x=\frac{3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(B=-\frac{5}{4x^2-12x+35}\)\(-\frac{5}{26}\) khi \(x=\frac{3}{2}\)

5 tháng 7 2017

a) đặt \(A=x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)

b) đặt \(B=2+x-x^2\)

\(=-x^2+x+2\)

\(=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)

Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)

c) đặt \(C=x^2-4x+1\)

\(=x^2-2\cdot x\cdot2+2^2-4+1\)

\(=\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra khi \(x=2\)

Vậy \(MIN_c=-3\) khi \(x=2\)

d) đặt \(D=4x^2+4x+11\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)

mấy câu còn lại tương tự

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

12 tháng 6 2018

\(A=x^2-6x+3\)

\(=\left(x^2-6x+9\right)-6\)

\(=\left(x+3\right)^2-6\)

ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)

vậy gtnn của A là -6 tại x=-3

\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

vay .............................................

2/

\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)

vay .........................................

\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)

vay.....................................

nếu có sai mong bạn thông cảm

12 tháng 6 2018

ko sao cảm ơn

6 tháng 6 2019

Theo mình nghĩ thì phải là giá trị lớn nhất

A=-(x^2-4x+5)

A=-[(x-2)^2+1]

Mà (x-2)^2+1>=1

Nên A<=-1

B=-(x^2+6x-1)

B=-[(x+3)^2-10]

nên B<=10

C=-(x^2+3x+2)

C=-(x^2+3x+9/4-1/4)

C=-[(x+3/2)^2-1/4]

Nên C<=1/4

D=-(2x^2-3x+1)

D=-2(x^2-3x/2+1/2)

D=-2(x^2-3x/2+9/16-1/16)

D=-2[(x-3/2)^2-1/16]

Nên D<=1/8

Chúc bạn học tốt!

êu cô ra sai đề phải GTLN mới làm đc