K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 9 2019

\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)

\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)

NV
13 tháng 11 2019

a/ Gọi K (hay L gì đó) có tọa độ \(K\left(0;y\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;3\right)\\\overrightarrow{CK}=\left(-5;y-10\right)\end{matrix}\right.\)

Do AB//CK \(\Leftrightarrow\frac{-5}{4}=\frac{y-10}{3}\Rightarrow y=\frac{25}{4}\) \(\Rightarrow K\left(0;\frac{25}{4}\right)\)

b/ Gọi \(J\left(x;0\right)\Rightarrow\overrightarrow{JA}=\left(-1-x;2\right)\) ; \(\overrightarrow{JB}=\left(3-x;5\right)\); \(\overrightarrow{JC}=\left(5-x;10\right)\)

\(\Rightarrow\overrightarrow{JA}-2\overrightarrow{JB}+4\overrightarrow{JC}=\left(13-3x;32\right)\)

\(\Rightarrow T=\left|\overrightarrow{JA}-2\overrightarrow{JB}+4\overrightarrow{JC}\right|=\sqrt{\left(13-3x\right)^2+32^2}\ge32\)

\(T_{min}=32\) khi \(13-3x=0\Leftrightarrow x=\frac{13}{3}\Rightarrow J\left(\frac{13}{3};0\right)\)

NV
13 tháng 11 2019

c/ Gọi \(Q\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AQ}=\left(1;y-2\right)\\\overrightarrow{QC}=\left(5;10-y\right)\end{matrix}\right.\)

\(\Rightarrow T=AQ+CQ=\sqrt{1^2+\left(y-2\right)^2}+\sqrt{5^2+\left(10-y\right)^2}\)

\(\Rightarrow T\ge\sqrt{\left(1+5\right)^2+\left(y-2+10-y\right)^2}=10\)

\(T_{min}=10\) khi \(\frac{y-2}{1}=\frac{10-y}{5}\Leftrightarrow y=\frac{10}{3}\Rightarrow Q\left(0;\frac{10}{3}\right)\)

d/ Gọi \(P\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AP}=\left(x+1;-2\right)\\\overrightarrow{PB}=\left(3-x;5\right)\end{matrix}\right.\)

\(\Rightarrow T=PA+PB=\sqrt{\left(x+1\right)^2+\left(-2\right)^2}+\sqrt{\left(3-x\right)^2+5^2}\)

\(\Rightarrow T\ge\sqrt{\left(x+1+3-x\right)^2+\left(-2+5\right)^2}=5\)

\(T_{min}=5\) khi \(\frac{x+1}{-2}=\frac{3-x}{5}\Rightarrow x=-\frac{11}{3}\Rightarrow P\left(-\frac{11}{3};0\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2018

Lời giải:

Ta có: \(A=\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+4}{c}\)

\(\Leftrightarrow A=1+\frac{1}{a}+1+\frac{1}{b}+1+\frac{4}{c}=3+\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)(a+b+c)\geq (1+1+2)^2\)

\(\Leftrightarrow \left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\geq \frac{4^2}{a+b+c}=\frac{16}{6}=\frac{8}{3}\)

Do đó: \(A\geq 3+\frac{8}{3}=\frac{17}{3}\) hay \(A_{\min}=\frac{17}{3}\)

Dấu bằng xảy ra khi \((a,b,c)=(\frac{3}{2}; \frac{3}{2}; 3)\)

27 tháng 2 2018

cai hang thu ba la dung bat dang gi vay ban hoi do gioi khong thay

18 tháng 7 2016

Hình như là 1 thẻ 40k, đổi ra tiền mặt được 1 tờ 60k đó bạn hehe

18 tháng 7 2016

Vậy chắc hốt bạc $$$$$$$$$

oaoa

NV
15 tháng 9 2020

ĐKXĐ: \(-3\le x\le5\)

\(y^2=8-2\sqrt{\left(x+3\right)\left(5-x\right)}\le8\)

\(\Rightarrow-2\sqrt{2}\le y\le2\sqrt{2}\)

\(y_{max}=2\sqrt{2}\) khi \(x=5\)

\(y_{min}=-2\sqrt{2}\) khi \(x=-3\)

a: \(\Leftrightarrow\left(2x-3;y+5\right)\in\left\{\left(1;20\right);\left(2;10\right);\left(4;5\right);\left(5;4\right);\left(10;2\right);\left(20;1\right)\right\}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=1\\y+5=20\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left(2;15\right)\)

b: \(\Leftrightarrow\left(x-7;y+1\right)\in\left\{\left(1;18\right);\left(2;9\right);\left(3;6\right);\left(6;3\right);\left(9;2\right);\left(18;1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(8;17\right);\left(9;8\right);\left(10;5\right);\left(13;2\right);\left(16;1\right);\left(25;0\right)\right\}\)