Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{x^2-1}\)
\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(2x-3\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2-x-3}{\left(x-1\right)\left(x+1\right)}\)
\(B=\frac{\left(x^2-x\right)+\left(2x^2+2x-3x-3\right)-\left(2x^2-x-3\right)}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x^2-x}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x}{x+1}\)
MÌnh nghĩ đề câu b là với x>-4 mới đúng chứ
\(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{\left(x^2-1\right)}.\)
\(=\frac{x\left(x-1\right)+\left(2x-3\right)\left(x+1\right)-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)
\(\Rightarrow A.B=\frac{x}{\left(x+1\right)}.\frac{x\left(x+1\right)}{\left(x-2\right)}=\frac{x^2}{\left(x-2\right)}=\frac{x^2-4+4}{\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x+2\right)+4}{\left(x-2\right)}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)
Áp dụng BĐT Cô - Si cho 2 số dương \(x-2;\frac{4}{x-2}\)ta có :
\(x-2+\frac{4}{x-2}\ge2\sqrt{\frac{\left(x-2\right).4}{x-2}}=2\sqrt{4}=4\)
\(\Rightarrow x-2+\frac{4}{x-2}\ge4\Rightarrow x-2+\frac{4}{x-2}+4\ge8\)
Hay \(S_{min}=4\Leftrightarrow x-2=\frac{4}{x-2}\)
\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)}=\frac{4}{x-2}\Rightarrow x^2+4x+4=4\)
\(\Rightarrow x^2+4x=0\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)\(\Rightarrow...\)
Cách khác:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{x^4}{x+xy}+\frac{y^4}{y+yz}+\frac{z^4}{z+zx}\geq \frac{(x^2+y^2+z^2)^2}{x+y+z+xy+yz+xz}\)
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2+z^2\geq xy+yz+xz(1)\)
\(\Rightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)
\(\Rightarrow 3(x^2+y^2+z^2)\geq (x+y+z)^2\)
\(\Rightarrow (x+y+z)^2\leq 3(x^2+y^2+z^2)\leq (xy+yz+xz)(x^2+y^2+z^2)\leq (x^2+y^2+z^2)^2\)
\(\Rightarrow x+y+z\le x^2+y^2+z^2(2)\)
Từ $(1);(2)$ suy ra:
\(P\geq \frac{(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)}=\frac{x^2+y^2+z^2}{2}\geq \frac{xy+yz+xz}{2}\geq \frac{3}{2}\)
Vậy $P_{\min}=\frac{3}{2}$
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{x^3}{y+1}+\frac{y+1}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{x^3}{y+1}.\frac{y+1}{4}.\frac{1}{2}}=\frac{3x}{2}\)
\(\frac{y^3}{z+1}+\frac{z+1}{4}+\frac{1}{2}\geq \frac{3y}{2}\)
\(\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\geq \frac{3z}{2}\)
Cộng theo vế và thu gọn:
\(\Rightarrow P\geq \frac{5}{4}(x+y+z)-\frac{9}{4}\)
Theo hệ quả quen thuộc của BĐT AM-GM:
\((x+y+z)^2\geq 3(xy+yz+xz)\geq 9\)
\(\Rightarrow x+y+z\geq 3\)
\(\Rightarrow P\geq \frac{5}{4}(x+y+z)-\frac{9}{4}\geq \frac{5}{4}.3-\frac{9}{4}=\frac{3}{2}\)
Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+4\geq 4x; y^2+1\geq 2y$
$\Rightarrow P=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}$
$\geq 4x+2y+\frac{1}{x}+\frac{1}{x+y}-5$
$=[\frac{x+y}{9}+\frac{1}{x+y}]+[\frac{x}{4}+\frac{1}{x}]+\frac{131}{36}x+\frac{17}{9}y-5$
$\geq 2\sqrt{\frac{1}{9}}+2\sqrt{\frac{1}{4}}+\frac{17}{9}(x+y)+\frac{7}{4}x-5$
$\geq \frac{2}{3}+1+\frac{17}{9}.3+\frac{7}{4}.2-5=\frac{35}{6}$
Vậy $P_{\min}=\frac{35}{6}$ khi $x=2; y=1$
\(A=\left(x+y+z+\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge2\sqrt{x.\frac{1}{4x}}+2\sqrt{y.\frac{1}{4y}}+2\sqrt{z.\frac{1}{4z}}+\frac{3}{4}\left(\frac{9}{x+y+z}\right)\)
\(\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 15/2 tại x = y = z = 1/2
Lời giải của em ạ :D
\(A=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\ge x+y+z+\frac{9}{x+y+z}\)
Đặt \(t=x+y+z\le\frac{3}{2}\)
Khi đó \(A=t+\frac{9}{t}=\left(t+\frac{9}{4t}\right)+\frac{27}{4t}\ge3+\frac{27}{4\cdot\frac{3}{2}}=\frac{15}{2}\)
Đẳng thức xảy ra tại x=y=z=1/2
Áp dụng BĐT Cô-si với hai số \(x\) và \(\frac{1}{x}\) ,có:
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow x+\frac{1}{x}+3\ge5\)
hay \(H\ge5\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x^2=1\Leftrightarrow x=1\) (vì x\(\ge3\) )
Vậy \(Min_H=5\Leftrightarrow x=1\)