\(D=\frac{x}{x^2+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

+ D = x/(x2+1) = [1/2(x+1)2-1/2(x2+1)]/(x2+1) >=-1/2

=> MinD=-1/2 khi x = -1

+ D = x/(x2+1) = [-1/2(x-1)2+1/2(x2+1)]/(x2+1) <=1/2

=>MaxD=1/2 khi x = 1

15 tháng 4 2017

Tìm \(MAX\)

Ta có: \(\frac{2x+1}{x^2+2}=\frac{x^2+2-x^2+2x-1}{x^2+2}\)

\(=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)

Dấu "=" xảy ra khi \(\Leftrightarrow-\frac{\left(x-1\right)^2}{x^2+2}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy GTLN của biểu thức là \(1\) tại \(x=1\)

Tìm \(MIN\)

Ta có: \(1-\frac{\left(x-1\right)^2}{x^2+2}=-\frac{1}{2}+\frac{3}{2}-\frac{\left(x-1\right)^2}{x^2+2}\)

\(=-\frac{1}{2}+\frac{3x^2+6-2x^2+4x-2}{2\left(x^2+2\right)}\)

\(=-\frac{1}{2}+\frac{x^2+4x+4}{2\left(x^2+2\right)}=-\frac{1}{2}+\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}\ge-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\) 

Vậy GTNN của biểu thức là \(-\frac{1}{2}\) tại \(x=-2\)

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

13 tháng 2 2017

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

14 tháng 2 2019

Câu hỏi của Nguyễn Kim Chi - Toán lớp 8 - Học toán với OnlineMath

14 tháng 2 2019

\(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0.\)

tương tự chứng minh x^2+x+1>0

\(-2\left(x^2+2x+1\right)\le0\Rightarrow-\frac{2\left(x^2+2x+1\right)}{x^2+x+1}\le0\)

\(\Rightarrow\frac{-2x^2-4x-x}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1-3x^2-3x-3}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1}{x^2+x+1}-3\le0\Rightarrow D\le3.\)

\(2\left(x^2-2x+1\right)\le0;3\left(x^2+x+1\right)>0\)

\(\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}\ge0\Rightarrow\frac{2x^2-4x+2}{3\left(x^2+x+1\right)}=\frac{3\left(x^2-x+1\right)-x^2-x-1}{3\left(x^2+x+1\right)}=d-\frac{1}{3\Rightarrow}d\ge\frac{1}{3}\)

=> GTNN, GTLN