Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2-4x+4\right)+2014=\left(x-2\right)^2+2014\ge2014\)Vậy minA = 2014 khi x = 2 (maxA không tồn tại)
Câu B có thể bạn đã viết nhầm hạng tử cuối nên mình xin giải cả 2 trường hợp:
* \(B=10-x^2-2x=-\left(x^2+2x+1\right)+11=-\left(x+1\right)^2+11\le11\)=> maxB = 11 khi x = -1 (minB không tồn tại)
** \(B=10-x^2-2x^2=-3x^2+10\le10\)=> maxB = 10 khi x = 0 (minB không tồn tại)
Bài 2:
a: \(=-\left(x^2+2x-100\right)\)
\(=-\left(x^2+2x+1-101\right)\)
\(=-\left(x+1\right)^2+101< =101\)
Dấu = xảy ra khi x=-1
b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)
Dấu = xảy ra khi x=1/6
c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)
\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)
\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)
Dấu = xảy ra khi x=3 và y=-1
GTNN LÀ \(\frac{2017}{2018}\)
KHI VÀ CHỈ KHI \(x=-\frac{1}{2018}\)
Ta có : \(\frac{x^2+2x+2018}{x^2}=\frac{2018x^2+4036x+2018^2}{2018x^2}\)
\(=\frac{2017x^2+x^2+4036x+2018^2}{2018x^2}=\frac{2017x^2}{2018x^2}+\frac{x^2+4036x+2018^2}{2018x^2}\)
\(=\frac{2017}{2018}+\frac{\left(x+2018\right)^2}{2018x^2}\)
Vì \(\frac{\left(x+2018\right)^2}{2018x^2}\ge0\forall x\in R\)
Nên : \(\frac{2017}{2018}+\frac{\left(x+2018\right)^2}{2018x^2}\ge\frac{2017}{2018}\)
Vậy GTNN của pt là \(\frac{2017}{2018}\) Khi \(x=-2018\)