\(x^2+6x-3\)

b)\(-x^2+4x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

a) \(x^2+6x-3\)

\(=x^2+6x+9-12\)

\(=\left(x+3\right)^2-12\ge-12\)

Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

7 tháng 10 2019

b) \(-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\le7\)

Vậy GTLN của bt là 7\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

27 tháng 7 2018

a) \(A=x^2-2x-6\)

\(A=\left(x^2-2x+1\right)-7\)

\(A=\left(x-1\right)^2-7\)

\(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1

a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)

Dấu '=' xảy ra khi x=1

b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)

Dấu '=' xảy ra khi x=1/2

c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)

Dấu '=' xảy ra khi x=1/3

d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)

Dấu '=' xảy ra khi x=-6

e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)

Dấu '=' xảy ra khi x=3/2

13 tháng 2 2017

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

19 tháng 7 2018

Phép nhân và phép chia các đa thứcPhép nhân và phép chia các đa thứcPhép nhân và phép chia các đa thứcCâu D ở chỗ x+1 hay x-1 ạ

19 tháng 7 2018

x-1 nha bn

Câu 1: 

a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)

b: \(D=x^3+y^3+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=1-3xy+3xy=1\)

19 tháng 7 2018

1)Ta có A =x- 4x + 1

             = x2 - 2.2.x + 22 - 3

             = ( x - 2 )-3

  Với x \(\inℝ\), ( x - 2 )\(\ge\)

  \(\Rightarrow\)(x - 2 )- 3 \(\ge\)-3

Vậy GTNN của A là -3

2) Ta có B = 4x+ 4x + 11

                   = ( 2x )+ 2.2x.1 + 12 +10

                  = ( 2x + 1 )+10

*tương tự câu 1*

3) *tương tự câu 2*

4) Ta có P = ( 2x + 1 )2 + ( x + 2)

                   = [ ( 2x )+ 2.2x.1 + 12  ] + [ x+ 2.x.2 + 22 ]

                    = 4x2 + 4x +1 + x2 + 4x + 4 

                    = 5x2 + 8x + 5

       Với x\(\inℝ\), 5x2 \(\ge\)0

             mà GTNN của 8x + 5 là 5

\(\Rightarrow\) GTNN của 5x2 + 8x + 5  là 5

  Vậy GTNN của  ( 2x + 1 )2 + ( x + 2) là 5

Bài 1: Rút gọn biểu thức a. (5+3x)(x-2)-3(x+3)\(^2\) b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4) Bài 2: Phân tích đa thức thành nhân tử a. (x+y)\(^2\)+(x\(^2\)-y\(^2\)) b. -4x\(^2\)+25+4xy-y\(^2\) c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\) d. x\(^2\)-x-12 e. 2x\(^2\)+x-6 f. 3x\(^2\)+2x-5 g. x\(^3\)+2x\(^2\)-3 Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N a) A= x\(^2\)+4x+9 b) B= 2x\(^2\)-20x+53 c) M= 1+6x-x\(^2\) d) N=...
Đọc tiếp

Bài 1: Rút gọn biểu thức

a. (5+3x)(x-2)-3(x+3)\(^2\)

b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4)

Bài 2: Phân tích đa thức thành nhân tử

a. (x+y)\(^2\)+(x\(^2\)-y\(^2\))

b. -4x\(^2\)+25+4xy-y\(^2\)

c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\)

d. x\(^2\)-x-12

e. 2x\(^2\)+x-6

f. 3x\(^2\)+2x-5

g. x\(^3\)+2x\(^2\)-3

Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N

a) A= x\(^2\)+4x+9

b) B= 2x\(^2\)-20x+53

c) M= 1+6x-x\(^2\)

d) N= -x\(^2\)-y\(^2\)+xy+2x+2y

Bài 4: Tìm số

a) Tìm a để x\(^4\)-x\(^3\)+6x\(^2\)-x+a chia hết cho x\(^2\)-x+5

b) Tìm giái trị nguyên của n để 3n\(^3\)+10n\(^2\)-5 chia hết cho 3n+1

Bài 8: Tính giá trị của biểu thức

a) A= x\(^3\)-y\(^3\)-3xy với x-y=1

b) B= x\(^4\)+y\(^4\) với x,y là các số dương thỏa xy= 5, x\(^2\)+y\(^2\)=18

c) C= x\(^3\)-3xy(x-y)-y\(^3\)-x\(^2\)+2xy-y\(^2\) với x-y=7

d) D=x\(^{2013}\)-12x\(^{2012}\)+12x\(^{2011}\)-...+12x\(^3\)-12x\(^2\)+12x-2013 với x

Ai biết bài nào thì giải hộ em với ạ TvT

2
21 tháng 10 2019

Bài 3:

a) ta có: \(A=x^2+4x+9\)

\(=x^2+4x+4+5=\left(x+2\right)^2+5\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2

b) Ta có: \(B=2x^2-20x+53\)

\(=2\left(x^2-10x+\frac{53}{2}\right)\)

\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)

\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)

\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)

\(=2\left(x-5\right)^2+3\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)

Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5

c) Ta có : \(M=1+6x-x^2\)

\(=-x^2+6x+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

\(=-\left(x-3\right)^2+10\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3

21 tháng 10 2019

Bài 2:

a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)

\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)

\(=\left(x+y\right).\left(x+y+x-y\right)\)

\(=\left(x+y\right).2x\)

c) \(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)

\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)

Chúc bạn học tốt!