\(A=x^2-2x+2+4y^2+4y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=x^2-2x+1+4y^2+4y+1\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2>=0\)

Dấu '=' xảy ra khi x=1 và y=-1/2

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

1 tháng 9 2019

\(F=-x^4+x^2-4y^2+2x-4y+2000.\)

\(=-x^4+2x^2-1-x^2+2x-1-4y^2-4y-1+2003\)

\(=-\left(x^2-1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)

\(=-\left(x-1\right)^2\left(x+1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)

\(\Rightarrow F_{min}=2003\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)

Vậy \(F_{min}=2003\Leftrightarrow x=1;y=-\frac{1}{2}\)

13 tháng 7 2018

\(A=x^2-2x+2+4y^2+4y\)

\(A=\left(x^2-2x\cdot1+1\right)+\left(4y^2+4y\right)+1\)

\(A=\left(x-1\right)^2+4\left(y^2+y\right)+1\)

Do \(\left(x-1\right)^2>\) hoặc bằng 0 và \(4\left(y^2+y\right)\)> hoặc bằng 0

nên để A đạt GTNN thì \(\left\{{}\begin{matrix}x-1=0\\y^2+y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

13 tháng 7 2018

Vậy A\(_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

28 tháng 9 2018

Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)

\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)

\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)

\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)

Chúc bạn học tốt ~ 

28 tháng 9 2018

Đặt \(B=-x^2-2x-y^2-8y-10\)

\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)

\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)

\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)

Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)

Chúc bạn học tốt ~ 

8 tháng 10 2020

A = -x2 + 2xy - 4y2 + 2x + 10y - 8

=> -A = x2 - 2xy + 4y2 - 2x - 10y + 8

          = ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 3y2 - 12y + 12 ) - 5

          = [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 3( y2 - 4y + 4 ) - 5

          = [ ( x - y )2 - 2( x - y ) + 1 ] + 3( y - 2 )2 - 5

          = ( x - y - 1 )2 + 3( y - 2 )2 - 5 ≥ -5 ∀ x, y

Dấu "=" xảy ra <=> x = 3 ; y = 2

=> -A ≥ -5

=> A ≤ 5

=> MaxA = 5 <=> x = 3 ; y = 2

B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

= ( x2 - 6xy + 9y2 + 4x - 12y + 4 ) + ( x2 - 10x + 25 ) + 1975

= [ ( x2 - 6xy + 9y2 ) + ( 4x - 12y ) + 4 ] + ( x - 5 )2 + 1975

= [ ( x - 3y )2 + 2( x - 3y ).2 + 22 ] + ( x - 5 )2 + 1975

= ( x - 3y + 2 )2 + ( x - 5 )2 + 1975 ≥ 1975 ∀ x, y

Dấu "=" xảy ra <=> x = 5 ; y = 7/3

=> MinB = 1975 <=> x = 5 ; y = 7/3

8 tháng 10 2020

Ta có: A = -x2 + 2xy - 4y2 + 2x + 10y - 8

A = -[x2 - 2xy + 4y2 - 2x - 10y + 8]

A = -[(x2 - 2xy + y2) - 2(x + y) + 1 + 3y2 - 12y + 12 - 5]

A = -[(x - y)2 - 2(x + y) + 1 + 3(y - 2)2]+ 5

A = -[(x - y - 1)2 + 3(y - 2)2] + 5 \(\le\) 5 với mọi x

Dấu "=" xảy ra <=> x - y - 1 = 0 và y + 2 = 0

=>x = -1 và y = -2

Vậy MaxA = 5 khi x = -1 và y = -2

B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

B = (x2 - 6xy + 9y2) + 4(x - 3y) + 4 + x2 - 10x + 25 + 1975

B = (x - 3y + 2)2 + (x - 5)2 + 1975 \(\ge\)1975

đoạn cuối tt trên

8 tháng 7 2018

Nguyễn Ngọc Sáng theo mình là đề sai nên sửa thành x2

8 tháng 7 2018

a,sửa x8 thành x2

\(A=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+2\right)^2+21\le21\)

Dấu "=" xảy ra khi x+2=0 <=> x=-2

Vậy Amax = 21 khi x = -2

b,\(B=5-x^2+2x-4y^2-4y=-\left(x^2+2x+1\right)-\left(4y^2+4y+1\right)+7=-\left(x+1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy Bmax = 7 khi x=-1,y=-1/2