K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

C=x^2-6x+9+ y^2+5y+6,25-14,25

=(x-3)^2+(y+2,5)^2-14,25

do (x-3)^2 \(\ge\)0 (y+2,5)^2\(\ge\)0 nên C\(\ge\) -14,25

Vậy GTNN của C là -14,25 khi x=3,y=-2,5

13 tháng 8 2015

a) A = 4x^2 + 7x + 13 

      = 2x^2 + 2.2x. 7/4 + 49/16 + 159/16

      = (2x + 7/4 )^2 + 159/16 

Vạy GTNN của A là 159/16 khi 2x + 7/4 = 0 => 2x = -7/4 => x= -7/8

b) B  = 5 - 8x + x^2

      = x^2 - 8x + 16 - 11

        = ( x - 4 )^2 - 11 

Vậy GTNN  là 11 khi x - 4 = 0 => x= 4 

1 tháng 8 2018

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

29 tháng 5 2016

a/ Ta có:

\(A=x^2-6x+11\)

\(A=x\cdot x-3x-3x+3\cdot3+2\)

\(A=x\left(x-3\right)-3\left(x-3\right)+2\)

\(A=\left(x-3\right)\left(x-3\right)+2\)

\(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\ge0\)

Nên GTNN của \(\left(x-3\right)^2\)là 0

=> \(A_{min}=0+2=2\)

29 tháng 5 2016

mình chỉ biết a. thôi

a) ta có : \(A=x^2-6x+11\)

\(A=x.x-3x-3x+3.3+2\)

\(A=x\left(x-3\right)-3\left(x-3\right)+2\)

\(A=\left(x-3\right)\left(x-3\right)+2\)

\(A=\left(x-3\right)^2+2\)

vì \(\left(x-3\right)^2\ge0\)

nên GTNN của \(\left(x-3\right)^2\)là \(0\)

\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

16 tháng 8 2015

A=(2x)2+2.2x.\(\frac{7}{4}\)+\(\frac{49}{16}-\frac{49}{16}+13\)=(2x+7/2)2+159/16

ta co (2x+7/2)2> hoac bang 0

--> (2x+7/2)2+159/16> hoac bang 159/16

vay A dat gia tri nn la 159/16 khi x=-7/4

B= x2-2x.4+16-16+5=(x-4)2-11

ta co (x-4)2 > hoac bang 0

==> (x-4)2-11> hoac bang -11

vay B dat gtnn la -11 khi x=4

 

 

7 tháng 3 2022

Ta có: \(6x^2+5y^2=74>6x^2\Leftrightarrow x^2< \dfrac{37}{3}\Leftrightarrow x^2\in\left\{0,1,4,9\right\}\)

\(x^2=0\Rightarrow x=0\) thay x=0 pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.0^2+5y^2=74\\ \Leftrightarrow5y^2=74\\ \Leftrightarrow y^2=\dfrac{74}{5}\left(ktm\right)\)

\(x^2=1\Leftrightarrow x=\pm1\) thay x=\(\pm1\) pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm1\right)^2+5y^2=74\\ \Leftrightarrow6+5y^2=74\\ \Leftrightarrow y^2=\dfrac{68}{5}\left(ktm\right)\)

\(x^2=4\Leftrightarrow x=\pm2\) thay x=\(\pm2\) pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm2\right)^2+5y^2=74\\ \Leftrightarrow6.4+5y^2=74\\ \Leftrightarrow24+5y^2=74\\ \Leftrightarrow y^2=10\left(ktm\right)\)

\(x^2=9\Leftrightarrow x=\pm3\) thay x=\(\pm3\) vào pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm3\right)^2+5y^2=74\\ \Leftrightarrow6.9+5y^2=74\\ \Leftrightarrow54+5y^2=74\\ \Leftrightarrow y^2=4\\ \Leftrightarrow y=\pm2\)

Vậy \(\left(x,y\right)\in\left\{\left(-3;-2\right);\left(-3;2\right);\left(3;-2\right);\left(3;2\right)\right\}\)

 

8 tháng 3 2022

Ta có: 

\(6\left(x^2-4\right)=5\left(10-y^2\right)\left(1\right)\)

\(\Rightarrow6\left(x^2-4\right)⋮5\Leftrightarrow\left(6;5\right)=1\)

\(\Rightarrow x^2-4⋮5\Leftrightarrow x^2=5k+4\left(k\inℕ\right)\)

Đặt \(\left(1\right)=x^2-4=5k\)ta lại có:

\(\Rightarrow y^2=10-6k\)

Mà \(\hept{\begin{cases}x^2>0\\y^2>0\end{cases}}\Rightarrow\hept{\begin{cases}5k+4>0\\10-6k>0\end{cases}}\)

\(\Rightarrow-\frac{4}{5}< k< \frac{5}{3}\Leftrightarrow\orbr{\begin{cases}k=0\left(loại\right)\\k=1\end{cases}}\)

\(k=1\Leftrightarrow\hept{\begin{cases}x^2=9\\y^2=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm3\\y=\pm2\end{cases}}\)

Vậy cặp \(\left(x,y\right)\in\left\{\left(-3;-2\right);\left(3;2\right)\right\}\)