\(x = {x^4+2x^3 +8x+16 \over x^4-2x^3+8x^2-8x+16}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

Tử \(x^4+2x^3+8x+16\)

\(=x^4-2x^3+4x^2+4x^3-8x^2+16x+4x^2-8x+16\)

\(=x^2\left(x^2-2x+4\right)+4x\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)

\(=\left(x^2+4x+4\right)\left(x^2-2x+4\right)\)

\(=\left(x+2\right)^2\left(x^2-2x+4\right)\)

Mẫu \(x^4-2x^3+8x^2-8x+16\)

\(=x^4-2x^3+4x^2+4x^2-8x+16\)

\(=x^2\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)

\(=\left(x^2+4\right)\left(x^2-2x+4\right)\)

Thay tử và mẫu vào ta có:\(\frac{\left(x+2\right)^2\left(x^2-2x+4\right)}{\left(x^2+4\right)\left(x^2-2x+4\right)}=\frac{\left(x+2\right)^2}{x^2+4}\ge0\)

Dấu "=" khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Vậy Min=0 khi x=-2

 

NV
14 tháng 11 2019

ĐKXĐ; ...

a/ \(P=\frac{x^2}{x+4}\left[\frac{\left(x+4\right)^2}{x}\right]+9=x\left(x+4\right)+9=\left(x+2\right)^2+5\ge5\)

\(P_{min}=5\) khi \(x=-2\)

b/ \(Q=\left(\frac{\left(x+2\right)\left(x^2-2x+4\right).4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right).\frac{x\left(x-2\right)^3}{-16}\)

\(=\left(\frac{4\left(x^2-2x+4\right)-4x\left(x-2\right)}{\left(x-2\right)^2}\right).\frac{-x\left(x-2\right)^3}{16}\)

\(=\frac{16}{\left(x-2\right)^2}.\frac{-x\left(x-2\right)^3}{16}=-x\left(x-2\right)=-x^2+2x\)

\(=1-\left(x-1\right)^2\le1\)

\(Q_{max}=1\) khi \(x=1\)

8 tháng 12 2016

616 là 16 nha các p

8 tháng 12 2016

bằng -2

29 tháng 11 2016

\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)

\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)

\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)

\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)

\(=\frac{2005\times2010-6}{2005\times2011}\)

\(=\frac{2004}{2005}\)

ĐKXĐ: x∉{0;2}

Ta có: \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)

\(\Leftrightarrow\frac{5-x}{4x\left(x-2\right)}+\frac{7}{8x}-\frac{x-1}{2x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}-\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}=0\)

Suy ra: \(10-2x+7x-14-4x+4-x=0\)

\(\Leftrightarrow0x=0\)

Vậy: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;2\right\}\end{matrix}\right.\)

30 tháng 4 2020

1) 3(x + 2) = 5x + 8

<=> 3x + 6 = 5x + 8

<=> 3x + 6 - 5x - 8 = 0

<=> -2x - 2 = 0

<=> -2x = 0 + 2

<=> -2x = 2

<=> x = -1

2) 2(x - 1) = 3(3 + x) + 3

<=> 2x - 2 = 9 + x + 3

<=> 2x - 2 = 12 + x

<=> 2x - 2 - 12 - x = 0

<=> x - 14 = 0

<=> x = 0 + 14

<=> x = 14

3) 5 - (x - 6) = 4(3 - 2x)

<=> 5 - x + 6 = 12 - 8x

<=> 11 - x = 12 - 8x

<=> 11 - x - 12 + 8x = 0

<=> -1 + 7x = 0

<=> 7x = 0 + 1

<=> 7x = 1

<=> x = 1/7