\(\sqrt{1-6X+9X^2}+\sqrt{9X^2-12X+4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(=\left|1-3x\right|+\left|3x-2\right|\)

\(\ge\left|1-3x+3x-2\right|=\left|-1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-3x\right)\left(3x-2\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{2}{3}\)

Vậy \(A_{min}=1\) tại \(\frac{1}{3}\le x\le\frac{2}{3}\)

2 tháng 8 2017

Xin lỗi cậu tớ mới học lớp 7 thôi

20 tháng 11 2019

a) \(\sqrt{x}-x=-\left(x-\sqrt{x}\right)\)

\(=-\left[\left(\sqrt{x}\right)^2-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}\right]+\frac{1}{4}\)

\(=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy GTLN của bt là \(\frac{1}{4}\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)

14 tháng 8 2017

\(Q=\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}+2011\)

\(Q=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}+2011\)

\(Q=\left|3x-1\right|+\left|5-3x\right|+2011\)

Đặt \(Q'=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)

Đẳng thức xảy ra \(\Leftrightarrow\left(3x-1\right)\left(5-3x\right)\ge0\)

\(\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\)

\(\Rightarrow Min_Q=Min_{Q'}+2011=4+2011=2015\)

14 tháng 8 2017

Q = \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}+2011\)

Q = \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-5\right)^2}+2011\)

Q = \(3x-1+3x-5+2011\)

Q = \(6x+2005\)

19 tháng 7 2017

\(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}\)

\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)

\(=\left|3x-1\right|+\left|5-3x\right|\)

\(\ge\left|3x-1+5-3x\right|=4\)