\(B=2x^2+6x-9\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

\(B=2x^2+6x-9=2x^2+6x+\frac{18}{4}-\frac{27}{2}=2\left(x^2+3x+\frac{9}{4}\right)-\frac{27}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{27}{2}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow B=2\left(x+\frac{3}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)

Dấu "=" xảy ra khi (x+3/2)2=0 <=> x+3/2=0 <=> x=-3/2

Vậy minB=-27/2 khi x=-3/2

4 tháng 7 2017

\(A=2x^2+6x-4\)

    \(=2\left(x^2+4x-2\right)\)

    \(=2\left(x^2+2.x.2+4-6\right)\)

    \(=2\left[\left(x+2\right)^2-6\right]\)

    \(=2\left(x+2\right)^2-12\)

Luôn có \(2\left(x+2\right)^2\ge0\) =>\(2\left(x+2\right)^2-12\ge-12\) với mọi \(x\)

\(\Rightarrow A\ge-12\)

\(\Rightarrow GTNN_{\left(A\right)}=-12\)

bn giải thích cho mik chỗ \(=2\left(x^2+4x-2\right)\)

12 tháng 7 2017

\(C=x^2-3x+5\)

\(=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

\(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)

\(\Rightarrow C\ge\dfrac{11}{4}\forall x\)

Dấu "=" xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)

Vậy \(MIN_C=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}.\)

\(D=3x^2-6x-1\)

\(=3\left(x^2-3x-\dfrac{1}{3}\right)\)

\(=3\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{31}{12}\right)\)

\(=3\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{31}{12}\right]\)

\(=3\left(x-\dfrac{3}{2}\right)^2-\dfrac{31}{4}\)

.......

Vậy \(MIN_D=\dfrac{-31}{4}\) khi \(x=\dfrac{3}{2}.\)

\(E=2x^2-6x\)

\(=2\left(x^2-3x\right)\)

\(=2\left[\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{9}{4}\right]\)

\(=2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

.....

Vậy \(MIN_E=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}.\)

23 tháng 10 2017

cái đấy ko có GTNN và GTLN chỉ có giả trị của x để mấy cái trên nguyên thôi, đề bài sai rùi bạn ạ ko phải nghĩ nha

21 tháng 10 2019

a) \(A=\left|x+2\right|+\left|x-3\right|\)

\(A=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)

\(\Rightarrow A\ge5\)

Dấu bằng xảy ra 

\(\Leftrightarrow\left(x+2\right)\left(3-x\right)\ge0\)

\(\Leftrightarrow-2\le x\le3\)

Vậy .............................

21 tháng 10 2019

                                          bạn có cần gấp ko   

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

19 tháng 7 2016

a.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{9+8+...+1}=\frac{90-45}{45}=\frac{45}{45}=1\)

Ta có:

\(\frac{a1-1}{9}=1\Rightarrow a1=9+1=10\)

\(\frac{a2-2}{8}=1\Rightarrow a2=8+2=10\)

...

\(\frac{a9-9}{1}=1\Rightarrow a9=1+9=10\)

b.

Cách 1:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

Ta có:

\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)

Cách 2:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1+3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7-6x}=0\)

Ta có:

\(2x+1=0\Rightarrow x=-\frac{1}{2}\)

\(3y-2=0\Rightarrow y=\frac{2}{3}\)

 

19 tháng 7 2016

thank you

20 tháng 9 2018

\(D=\frac{4x+1}{x+3}\inℤ\Leftrightarrow4x+1⋮x+3\)

\(\Rightarrow4x+12-11⋮x+3\)

\(\Rightarrow4\left(x+3\right)-11⋮x+3\)

\(\Rightarrow11⋮x+3\)

\(\Rightarrow x+3\in\left\{-1;1;-11;11\right\}\)

\(\Rightarrow x\in\left\{-4;-2;-14;8\right\}\)

20 tháng 9 2018

a) \(D=\frac{4x+1}{x+3}\)
=> 4x + 1 \(⋮\)( x + 3 ) để D là số nguyên

Mà ( x + 3 ) \(⋮\)( x + 3 ) => 4( x + 3 ) \(⋮\)( x + 3 )
=> [ 4x + 1 - 4( x + 3 ) ] \(⋮\)( x + 3 )
=> [ 4x + 1 - 4x + 12 ]  \(⋮\)( x + 3 )
=> 13  \(⋮\)( x + 3 )
=> \(x+3\inƯ\left(13\right)\)\(=\left\{\pm1;\pm13\right\}\)

x + 3-11-1313
24-1016

Vậy \(x\in\left\{-10;2;4;16\right\}\)Để D là số nguyên
b) \(E=\frac{6x+2}{2x-3}\)
=> 6x + 2 \(⋮\)2x - 3 để E là số nguyên
Mà ( 2x - 3 )  \(⋮\)( 2x - 3 ) => 3( 2x - 3 )  \(⋮\)( 2x - 3 )

=> [ 6x + 2 - 3( 2x - 3 ) ]  \(⋮\)( 2x - 3 )
=> [ 6x + 2 - 6x - 3 ]  \(⋮\)( 2x - 3 )
=> -1  \(⋮\)( 2x - 3 )
=> ( 2x - 3 ) \(\inƯ\left(-1\right)=\left\{\pm1\right\}\)
 

2x - 3-11
2x24
x12

Vậy x \(\in\left\{1;2\right\}\)để E là số nguyên
Còn phần còn lại cậu có thể làm tương tự.