K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

Ta có : \(\left|4x-1\right|\ge0\forall x\)

\(\left|2y+1\right|\ge0\forall y\)

\(\Rightarrow\left|4x+1\right|+\left|2y-1\right|\ge0\)

\(\Rightarrow B\ge0\)

Dấu "=" xảy ra <=> \(\left|4x-1\right|+\left|2y+1\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|4x-1\right|=0\\\left|2y+1\right|=0\end{cases}\Rightarrow\hept{\begin{cases}4x-1=0\\2y+1=0\end{cases}\Rightarrow}\hept{\begin{cases}4x=1\\2y=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{1}{2}\end{cases}}}\)

Vậy Min B = 0 Khi \(x=\frac{1}{4};y=-\frac{1}{2}\)

4 tháng 10 2019

Sửa đề chút nha bạn ! \(B=\left|4x-1\right|+\left|2x+1\right|\) và Điều kiện là \(x\in Z\)

                                                     Bài giải

Áp dụng : \(\left|A\right|\ge A\) Ta có :

\(\left|1-4x\right|\ge1-4x\text{ Dấu " = " xảy ra khi }1-4x>0\text{ }\Rightarrow\text{ }4x< 1\text{ }\Rightarrow\text{ }x< \frac{1}{4}\)

\(\left|2x+1\right|\ge2x+1\text{ Dấu " = " xảy ra khi }2x+1>0\text{ }\Rightarrow\text{ }2x>-1\text{ }\Rightarrow\text{ }x>-\frac{1}{2}\)

\(\Rightarrow\text{ }\left|1-4x\right|+\left|2x+1\right|\ge1-4x+2x+1\)

\(\Rightarrow\text{ }\left|1-4x\right|+\left|2x+1\right|\ge2x+2\text{ Dấu " = " xảy ra khi }-\frac{1}{2}< x< \frac{1}{4}\)

Đến đây chịu ! Sai ở đâu thì phải !

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

1 tháng 8 2016

a,  Ta có: -4x2+4x-1=-(4x2-4x+1)<=>-((2x)2-2.2x+1)=-(2x-1)2

18 tháng 9 2020

A = -4x2 + 4x - 1

= -( 4x2 - 4x + 1 )

= -( 2x - 1 )2 ≤ 0 ∀ x

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxA = 0 <=> x = 1/2

B = 3x2 + 2x + 5

= 3( x2 + 2/3x + 1/9 ) + 14/3

= 3( x + 1/3 )2 + 14/3 ≥ 14/3 ∀ x

Đẳng thức xảy ra <=> x + 1/3 = 0 => x = -1/3

=> MinB = 14/3 <=> x = -1/3

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

18 tháng 8 2016

a) \(A=x^2+\left(2y-1\right)^2\)

Vì \(x^2\ge0,\left(2y-1\right)^2\ge0\)

\(\Rightarrow A\ge0\)

Dấu  "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{1}{2}\end{cases}}\)

Vậy Min A=0 <=> x=0, y=0,5

b)\(B=\left(2x-1\right)^{2016}-1\)

Vì \(\left(2x-1\right)^{2016}\ge0\)

\(\rightarrow B\ge-1\)

Dấu "=" xảy ra khi và chỉ khi 2x-1=0 <->x=0,5

Vậy min B = -1 <=> x=0,5

18 tháng 8 2016

a) \(x^2\ge0\)\(;\)\(\left(2y-1\right)^2\ge0\)

\(\Rightarrow A=x^2+\left(2y-1\right)^2\ge0\)

Đẳng thức xảy ra khi: \(x^2=0\Rightarrow x=0\)\(;\)\(\left(2y-1\right)^2=0\Rightarrow2y-1=0\Rightarrow y=\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 0 khi x = 0 ; y = \(\frac{1}{2}\).

b)\(\left(2x-1\right)^{2016}\ge0\)\(\Rightarrow B=\left(2x-1\right)^{2016}-1\ge-1\)

Đẳng thức xảy ra khi: \(\left(2x-1\right)^{2016}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy giá trị nhỏ nhất của B là -1 khi x = \(\frac{1}{2}\)

\(4x^2+4x+6\)

\(=\left(2x\right)^2+2.2x.1+1+5\)

\(=\left(2x+1\right)^2+5\ge5\)

\(Min=5\Leftrightarrow2x+1=0\Rightarrow x=\frac{-1}{2}\)

\(x^2+6x+11\)

\(=x^2+2.x.3+9+2\)

\(=\left(x+3\right)^2+2\ge2\)

\(Min=2\Leftrightarrow x+3=0\Rightarrow x-3\)

\(x^2-3x+1\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\le\frac{-5}{4}\)

\(MIn=\frac{-5}{4}\Leftrightarrow x+\frac{3}{2}=0\Rightarrow x=\frac{-3}{2}\)

3 tháng 8 2016

B = 4x2 + 4x - 6 = (2x)2 + 2.2.x + 1 - 7 = (2x + 1)2 - 7 \(\ge\)-7

             Vậy MinB = -7 khi 2x + 1 = 0 => x = -1/2 

C = x2 + 6x + 11 = x2 + 2.3.x + 9 + 2 = (x + 3)2 + 2 \(\ge\)2

              Vậy MinC = 2 khi x + 3 = 0 => x = -3

D = x2 - 3x + 1 \(=x^2-2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

              Vậy MinD = -5/4 khi x - 3/2 = 0 => x = 3/2

19 tháng 7 2018

a) Đặt A = I 2x-1/3 I +107

Có I 2x - 1/3 I \(\ge\)0 với mọi x

=> I 2x - 1/3 I + 107 \(\ge\)107 với mọi x

Để A đạt GTNN thì A = 107 

Dấu " = " xảy ra \(\Leftrightarrow\)I 2x-1/3 I = 0

                          \(\Leftrightarrow\)2x - 1/3 = 0

                          \(\Leftrightarrow\) 2x = 1/3

                          \(\Leftrightarrow\)  x = 1/6

=> KL

b) Đặt B = I 1 - 4x I -1

Có I 1 - 4x I \(\ge\)0 với mọi x

\(\Rightarrow\)I 1 - 4x I - 1 \(\ge\)-1 với mọi x

Để B đạt GTNN thì B = -1

Dấu " = " xảy ra \(\Leftrightarrow\)I 1 - 4x I = 0

                          \(\Leftrightarrow\) 1 - 4x = 0

                          \(\Leftrightarrow\)  4x = 1

                          \(\Leftrightarrow\)  x = 1/4

=> KL

12 tháng 12 2023