Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)
Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)
Vậy Min A = -1 <=> X = -1/6
a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)
Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6
Ta có:\(\left(x-2\right)^2.\left(y-3\right)^2=-4\)
\(\Rightarrow\left[\left(x-2\right).\left(y-3\right)\right]^2=-4\)
Lại có:\(VP< 0\) mà \(VT\ge0\)
nên ko có x,y thỏa mãn
a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)
Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).
b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)
Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).
Đặt \(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S< 1-\frac{1}{100}< 1\Rightarrow S< 1\)
Làm vui đó chủ yếu là nghe link gửi
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}< 1\)
\(A< 1\left(đpcm\right)\)
a) \(A=1,7+\left|3,4-x\right|\ge1,7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3,4-x\right|=0\Rightarrow x=3,4\)
Vậy Min(A) = 1,7 khi x = 3,4
b) \(B=\left|x+2,8\right|-3,5\ge-3,5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+2,8\right|=0\Rightarrow x=-2,8\)
Vậy Min(B) = -3,5 khi x = -2,8
c) \(C=3,7+\left|4,3-x\right|\ge3,7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|4,3-x\right|=0\Rightarrow x=4,3\)
Vậy Min(C) = 3,7 khi x = 4,3
\(A=x^2+2x^4+3\)
\(=2\left(x^4+\frac{1}{2}x^2+\frac{3}{2}\right)\)
\(=2\left(x^4+2x^2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{3}{2}\right)\)
\(=2\left[\left(x^2+\frac{1}{4}\right)^2+\frac{23}{16}\right]\)
\(=2\left(x^2+\frac{1}{4}\right)^2+\frac{23}{8}\)
\(A_{min}\Leftrightarrow\left(x^2+\frac{1}{4}\right)_{min}\Leftrightarrow x^2_{min}\Rightarrow x=0\)
Với \(x=0\Rightarrow A=0^2+2.0^4+3=3\)
ta có:
\(x^2\ge0\forall x\in R\)
\(2x^4\ge0\forall x\in R\)
=>A\(\ge3\)
=>Amin =3
vậy.......
hc tốt