Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Để \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\) thì phải có 1 số nhỏ hơn 0 hoặc 3 số nhỏ hơn 0
TH1 : có 1 số nhỏ hơn 0
Vì \(x^2-1>x^2-4>x^2-7>x^2-10\)
Nên \(\hept{\begin{cases}x^2-1;x^2-4;x^2-7>0\\x^2-10< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-7>0\\x^2-10< 0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2>7\\x^2< 10\end{cases}\Leftrightarrow7< x^2< 10\Rightarrow x^2=9\Rightarrow x=\pm3}\)
TH2: 3 số nhỏ hơn 0
Vì \(x^2-1>x^2-4>x^2-7>x^2-10\)
Nên \(\hept{\begin{cases}x^2-1>0\\x^2-4;x^2-7;x^2-10< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\Rightarrow1< x^2< 4}\) (loại vì x là số nguyên)
Vậy \(x=\pm3\)
2) \(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\)
\(=\left|x-a\right|+\left|x-d\right|+\left|x-c\right|+\left|x-b\right|\)
\(=\left|x-a\right|+\left|d-x\right|+\left|x-c\right|+\left|b-x\right|\)
\(\ge\left|x-a+d-x\right|+\left|x-c+b-x\right|=\left|d-a\right|+\left|b-c\right|=c+d-a-b\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-a\right)\left(d-x\right)\ge0\\\left(x-c\right)\left(b-x\right)\ge0\end{cases}\Rightarrow b\le x\le c}\)
Vậy GTNN của A là \(c+d-a-b\) tại \(b\le x\le c\)
\(x< z\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\Rightarrow ab+ad< ab+bc\Rightarrow ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\)(đúng do x<y)
\(z< y\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow ad+cd< bc+cd\Rightarrow ad< bc\)(đúng do x<y)
Vậy x<z<y
a) \(-1< x< 0\Rightarrow\text{[}x\text{]}=-1\)
b) \(\frac{-7}{2}< x< -3\Rightarrow\text{[}x\text{]}=-4\)
Vì \(\frac{a}{b}< \frac{c}{d}\)nên ad < bc (1)
Xét tích a(b + d) = ab + ad (2)
b(a + c) = ba + bc (3)
Từ (1);(2);(3) suy ra a(b + d) < b(a + c) => \(\frac{a}{b}< \frac{a+c}{b+d}\) (4)
Tương tự ta có \(\frac{a+c}{b+d}< \frac{c}{d}\) (5)
Từ (4);(5) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)hay x < z < y