\(A=\left(3x-1\right)^2-4\left|3x-1\right|+5\)5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Đặt \(\left|3x-1\right|=a\) nên \(A=a^2-4a+5\)

\(\Rightarrow A=\left(a^2-4a+4\right)+1=\left(a-2\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow a=2\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)

Vậy \(A_{min}=1\) tại \(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)

17 tháng 5 2017

nguồn ở đâu vậy

4 tháng 8 2017

Đặt \(\left|3x-1\right|=a\)nên \(A=a^2-4a+5\)

Biến đổi A ta được \(A=a^2-4a+4+1=\left(a-2\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow a-2=0\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)

Vậy \(A_{min}=1\) tại \(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

giúp mk với tứ tư mk phải nộp rùi bài 1: a, \(2x\left(3x^2-5x+3\right)\) b, \(-2x\left(x^2+5x-3\right)\) c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\) bài 2: a,\(\left(2x-1\right).\left(x^2-5-4\right)\) b,\(-\left(5x-4\right).\left(2x+3\right)\) c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\) d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\) e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\) bài 3: c/m rằng gtri của...
Đọc tiếp

giúp mk với tứ tư mk phải nộp rùi

bài 1:

a, \(2x\left(3x^2-5x+3\right)\)

b, \(-2x\left(x^2+5x-3\right)\)

c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\)

bài 2:

a,\(\left(2x-1\right).\left(x^2-5-4\right)\)

b,\(-\left(5x-4\right).\left(2x+3\right)\)

c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\)

d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\)

e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\)

bài 3:

c/m rằng gtri của biểu thức ko phụ thuộc vào gtri của biến

a,\(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)

b,\(3\left(2x-1\right)-5\left(x-3\right)+6\left(3x-4\right)-19x\)

bài 4 :tìm x biết

a, \(3x+2\left(5-x\right)=0\)

b,\(x\left(2x-1\right).\left(x+5\right)-\left(2x^2+1\right).\left(x+4,5\right)=3,5\)

c,\(3x^2-3x\left(x-2\right)=36\)

d,\(\left(3x^2-x+1\right).\left(x-1\right)+x^2.\left(4-3x\right)=\dfrac{5}{2}\)

4
11 tháng 12 2017

1,

a,\(2x\left(3x^2-5x+3\right)\)

\(=6x^3-10x^2+6x\)

b,\(-2x\left(x^2+5x-3\right)\)

\(=-2x^3-10x^2+6x\)

c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)

\(=-x^4+2x^2-\dfrac{3}{2}x\)

Bài 2:

a) \(\left(2x-1\right)\left(x^2-5-4\right)\)

\(=\left(2x-1\right)\left(x^2-9\right)\)

\(=2x^3-18x-x^2+9\)

b) \(-\left(5x-4\right)\left(2x+3\right)\)

\(=-\left(10x^2+15x-8x-12\right)\)

\(=-10x^2-7x+12\)

c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=8x^3-y^3\)

2 tháng 9 2016

Bài 1:

a)(4x-3)(3x+2)-(6x+1)(2x-5)+1

=12x2-x-6-12x2+28x+5+1

=27x

b)(3x+4)2+(4x-1)2+(2+5x)(2-5x)

=9x2+24x+16+16x2-8x+1+4-25x2

=16x+21

c)(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9

=8x3+1+8-27x3-9

=-19x3

 

2 tháng 9 2016

Bài 2:

a)3x(x-4)-x(5+3x)=-34

=>3x2-12x-3x2-5x=-34

=>-17x=-34

=>x=2

Vậy x=2

b)(3x+1)2+(5x-2)2=34(x+2)(x-2)

=>9x2+6x+1+25x2-20x+4=34(x2-4)

=>34x2-14x+5-34x2+136=0

=>-14x+141=0

=>-14x=-141

=>x=\(\frac{141}{14}\)

Vậy x=\(\frac{141}{14}\)

c)x3+3x2+3x+28=0

=>x3-x2+7x+4x2-4x+28=0

=>x(x2-x+7)+4(x2-x+7)=0

=>(x+4)(x2-x+7)=0

\(\Rightarrow\left[\begin{array}{nghiempt}x+4=0\\x^2-x+7=0\left(2\right)\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\\left(2\right)\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}>0\end{array}\right.\)

=>(2) vô nghiệm

Vậy x=-4

18 tháng 7 2016

a) \(3x\left(2x+1\right)=5\left(2x+1\right)\)

\(3x=5\)

\(x=\frac{5}{3}\)

b) \(\left(3x-8\right)^2=\left(2x-7\right)^2\)

\(3x-8=2x-7\)

\(x=1\)

c) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=0\)

\(\left(4x^2-3x-18\right)^2=\left(4x^2+3x\right)^2\)

\(4x^2-3x-18=4x^2+3x\)

\(6x=-18\)

\(x=-3\)

d) Sai đề

e) ko bt

3 tháng 3 2017

\(F\)=5 ; \(I\)=91

7 tháng 3 2017

đặt |3x-5|= y ,ĐK : y >/ 0 

F=y2-6y+10 đến đây đơn giản

ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

25 tháng 11 2019

b. (x2-0,5):2x-(3x-1)2:(3x-1)=0

<=> \(\frac{1}{2}\)x-0,25-3x+1=0

<=>\(-\frac{5}{2}\)x+0,75=0

<=> \(-\frac{5}{2}\)x=-0,75

<=> x=0,3

chúc bạn học tốt

25 tháng 11 2019

\(a.\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=4\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]=4\)

\(\Leftrightarrow\left(x^2+x+5x+5\right)\left(x^2+4x+2x+8\right)=4\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=4\)

\(\text{Đặt a = }x^2+6x+5\text{ }\Rightarrow\text{ }a+3=x^2+6x+8\)

\(\Leftrightarrow a\left(a+3\right)=4\)

\(\Leftrightarrow a^2+3a-4=0\)

\(\Leftrightarrow a^2+4a-a-4=0\)

\(\Leftrightarrow a\left(a+4\right)-\left(a+4\right)=0\)

\(\Leftrightarrow\left(a+4\right)\left(a-1\right)=0\)

\(\Leftrightarrow\left(x^2+6x+9\right)\left(x^2+6x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2\left[\left(x^2+6x+9\right)-5\right]=0\)

\(\Leftrightarrow\left(x+3\right)^2\left[\left(x+3\right)^2-5\right]=0\)

\(\text{Hoặc }\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

\(\text{Hoặc }\left(x+3\right)^2-5=0\Leftrightarrow\left(x+3\right)^2=5\Leftrightarrow\hept{\begin{cases}x+3=\sqrt{5}\\x+3=-\sqrt{5}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{cases}}}\)

\(\text{Vậy }x\in\left\{-3;\sqrt{5}-3;-\sqrt{5}-3\right\}\)