\(A=x^4+3x^2+2\)

b)\(B=\left(x^4+5\right)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

a,Vì \(x^4\ge0;3x^2\ge0=>x^4+3x^2+2\ge2\) (với mọi x)

Dấu "=" xảy ra \(< =>x^4=3x^2=0< =>x=0\)

Vậy MInA=2 khi x=0

b,Vì \(x^4\ge0=>x^4+5\ge5=>\left(x^4+5\right)^2\ge5^2=25\) (với mọi x)

Dấu "=" xảy ra \(< =>x^4=0< =>x=0\)

Vậy MinB=25 khi x=0

a) \(x^4+3x^2+2\)

\(=\left(x^2\right)^2+2.x^2.\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\)

\(=\left(x^2+\frac{3}{2}\right)^2-\frac{1}{4}\le\frac{-1}{4}\)

MIN A = \(\frac{-1}{4}< =>x^2+\frac{3}{2}=0\)

Do \(x^2\ne\frac{-3}{2}=>MINA\)không  có

b) Cũng ko có Min

a)\(A=x^4+3x^2+2\)

=\(\left(x^2+1\right)^2+\left(x^2+1\right)\)

Với mọi x thì \(\left(x^2+1\right)^2+\left(x^2+1\right)\)>=2

Hay A>=2

Để A=2 thì

\(\left(x^2+1\right)^2=1\)\(x^2+1=1\)

=>\(x^2+1=-2hoac1\)\(x^2=0\)

=>\(x^2+1=1\)và x=0

=>x=0

Vậy...

Các câu sau tương tự

6 tháng 9 2017

thanks you

1 tháng 1 2019

a) \(A=\left|x-1\right|+2018\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

1 tháng 1 2019

\(Tacó:\)

\(|x-1|\ge0\Rightarrow|x-1|+2018\left(\cdot\right)\ge2018\)

\(\Rightarrow GTNNcua\left(\cdot\right)=2018\)

Dấu "=" xảy ra khi: x=1

Vậy (*) Đạt GTNN là: 2018 khi: x=1

Câu 2:

a) Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Rightarrow x^4+3x^2+2\ge2\forall x\)

Dấu '=' xảy ra khi

\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)

\(x^2\ge0\forall x\)

nên \(x^2+3\ge3>0\forall x\)

Do đó: \(x^2=0\Leftrightarrow x=0\)

Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0

b)\(B=\left(x^4+5\right)^2\)

Ta có: \(x^4\ge0\forall x\)

\(\Rightarrow x^4+5\ge5\forall x\)

\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)

Dấu '=' xảy ra khi

\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)

Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0

c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left(y+2\right)^2\ge0\forall y\)

Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2

Câu 3:

a) \(A=5-3\left(2x-1\right)^2\)

Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)

Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi

\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)

b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)

\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\)\(\frac{1}{3}\) khi x=1

c) \(C=\frac{x^2+8}{x^2+2}\)

Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\forall x\)

\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)

\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)

Dấu '=' xảy ra khi

\(x^2=0\Leftrightarrow x=0\)

Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0

4 tháng 2 2018

lu ngu

6 tháng 9 2017

a) \(A=x^4+3x^2+2\)

Ta có: \(x^4\ge0\forall x\) và \(3x^2\ge0\forall x\Rightarrow x^4+3x^2\ge0\forall x\)

\(\Rightarrow A=x^4+3x^2+2\ge2\forall x\) <=> Có GTNN là 2 khi x = 0

Vậy AMin = 2 tại x = 0

b) \(B=\left(x^4+5\right)^2\)

Ta có : \(x^4\ge0\forall x\Leftrightarrow x^4+5\ge5\forall x\)

\(\Rightarrow B=\left(x^4+5\right)^2\ge5^2=25\forall x\) <=> Có GTNN là 25 tại x = 0

Vậy BMin = 25 tại x = 0

\(C=\left(x-1\right)^2+\left(y+2\right)^2\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall x\end{cases}}\) nên \(C=\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\) <=> Có GTNN là 0 tại \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy CMin = 0 tại x=1;y=-2

6 tháng 9 2017

a, Vì \(x^4\ge0;3x^2\ge0\)

=> \(x^4+3x^2\ge0\)

=> \(A=x^4+3x^2+2\ge2\)

Dấu "=" xảy ra khi x=0

Vậy MinA = 2 khi x=0

b, Vì \(x^4\ge0\Rightarrow x^4+5\ge5\Rightarrow B=\left(x^4+5\right)^2\ge25\)

Dấu "=" xảy ra khi x = 0

Vậy MInB = 25 khi x=0

c, Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow C=\left(x-1\right)^2+\left(y+2\right)^2\ge0}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy MinC = 0 khi x = 1,y = -2