Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=x^4+3x^2+2\)
=\(\left(x^2+1\right)^2+\left(x^2+1\right)\)
Với mọi x thì \(\left(x^2+1\right)^2+\left(x^2+1\right)\)>=2
Hay A>=2
Để A=2 thì
\(\left(x^2+1\right)^2=1\) và \(x^2+1=1\)
=>\(x^2+1=-2hoac1\) và \(x^2=0\)
=>\(x^2+1=1\)và x=0
=>x=0
Vậy...
Các câu sau tương tự
a) \(A=\left|x-1\right|+2018\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Câu 2:
a) Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Rightarrow x^4+3x^2+2\ge2\forall x\)
Dấu '=' xảy ra khi
\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)
Vì \(x^2\ge0\forall x\)
nên \(x^2+3\ge3>0\forall x\)
Do đó: \(x^2=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0
b)\(B=\left(x^4+5\right)^2\)
Ta có: \(x^4\ge0\forall x\)
\(\Rightarrow x^4+5\ge5\forall x\)
\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)
Dấu '=' xảy ra khi
\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0
c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2
Câu 3:
a) \(A=5-3\left(2x-1\right)^2\)
Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)
Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi
\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)
b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\) là \(\frac{1}{3}\) khi x=1
c) \(C=\frac{x^2+8}{x^2+2}\)
Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\forall x\)
\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)
\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)
Dấu '=' xảy ra khi
\(x^2=0\Leftrightarrow x=0\)
Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0
a) \(A=x^4+3x^2+2\)
Ta có: \(x^4\ge0\forall x\) và \(3x^2\ge0\forall x\Rightarrow x^4+3x^2\ge0\forall x\)
\(\Rightarrow A=x^4+3x^2+2\ge2\forall x\) <=> Có GTNN là 2 khi x = 0
Vậy AMin = 2 tại x = 0
b) \(B=\left(x^4+5\right)^2\)
Ta có : \(x^4\ge0\forall x\Leftrightarrow x^4+5\ge5\forall x\)
\(\Rightarrow B=\left(x^4+5\right)^2\ge5^2=25\forall x\) <=> Có GTNN là 25 tại x = 0
Vậy BMin = 25 tại x = 0
\(C=\left(x-1\right)^2+\left(y+2\right)^2\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall x\end{cases}}\) nên \(C=\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\) <=> Có GTNN là 0 tại \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy CMin = 0 tại x=1;y=-2
a, Vì \(x^4\ge0;3x^2\ge0\)
=> \(x^4+3x^2\ge0\)
=> \(A=x^4+3x^2+2\ge2\)
Dấu "=" xảy ra khi x=0
Vậy MinA = 2 khi x=0
b, Vì \(x^4\ge0\Rightarrow x^4+5\ge5\Rightarrow B=\left(x^4+5\right)^2\ge25\)
Dấu "=" xảy ra khi x = 0
Vậy MInB = 25 khi x=0
c, Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow C=\left(x-1\right)^2+\left(y+2\right)^2\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy MinC = 0 khi x = 1,y = -2
a,Vì \(x^4\ge0;3x^2\ge0=>x^4+3x^2+2\ge2\) (với mọi x)
Dấu "=" xảy ra \(< =>x^4=3x^2=0< =>x=0\)
Vậy MInA=2 khi x=0
b,Vì \(x^4\ge0=>x^4+5\ge5=>\left(x^4+5\right)^2\ge5^2=25\) (với mọi x)
Dấu "=" xảy ra \(< =>x^4=0< =>x=0\)
Vậy MinB=25 khi x=0
a) \(x^4+3x^2+2\)
\(=\left(x^2\right)^2+2.x^2.\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\)
\(=\left(x^2+\frac{3}{2}\right)^2-\frac{1}{4}\le\frac{-1}{4}\)
MIN A = \(\frac{-1}{4}< =>x^2+\frac{3}{2}=0\)
Do \(x^2\ne\frac{-3}{2}=>MINA\)không có
b) Cũng ko có Min