Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2x^2+6x-9=2x^2+6x+\frac{18}{4}-\frac{27}{2}=2\left(x^2+3x+\frac{9}{4}\right)-\frac{27}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{27}{2}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow B=2\left(x+\frac{3}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
Dấu "=" xảy ra khi (x+3/2)2=0 <=> x+3/2=0 <=> x=-3/2
Vậy minB=-27/2 khi x=-3/2
\(C=x^2-3x+5\)
\(=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
\(\Rightarrow C\ge\dfrac{11}{4}\forall x\)
Dấu "=" xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(MIN_C=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}.\)
\(D=3x^2-6x-1\)
\(=3\left(x^2-3x-\dfrac{1}{3}\right)\)
\(=3\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{31}{12}\right)\)
\(=3\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{31}{12}\right]\)
\(=3\left(x-\dfrac{3}{2}\right)^2-\dfrac{31}{4}\)
.......
Vậy \(MIN_D=\dfrac{-31}{4}\) khi \(x=\dfrac{3}{2}.\)
\(E=2x^2-6x\)
\(=2\left(x^2-3x\right)\)
\(=2\left[\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{9}{4}\right]\)
\(=2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
.....
Vậy \(MIN_E=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}.\)
a) \(A=\left|x+2\right|+\left|x-3\right|\)
\(A=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
\(\Rightarrow A\ge5\)
Dấu bằng xảy ra
\(\Leftrightarrow\left(x+2\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow-2\le x\le3\)
Vậy .............................
cái đấy ko có GTNN và GTLN chỉ có giả trị của x để mấy cái trên nguyên thôi, đề bài sai rùi bạn ạ ko phải nghĩ nha
Nhóm (x+1)(x+4)=t
(x+2)(x+3)=t+2
A=t(t+2)+5
A=t2+2t+5
A=(t+1)2+4
MinA=4 khi ............
\(A=2x^2+6x-4\)
\(=2\left(x^2+4x-2\right)\)
\(=2\left(x^2+2.x.2+4-6\right)\)
\(=2\left[\left(x+2\right)^2-6\right]\)
\(=2\left(x+2\right)^2-12\)
Luôn có \(2\left(x+2\right)^2\ge0\) =>\(2\left(x+2\right)^2-12\ge-12\) với mọi \(x\)
\(\Rightarrow A\ge-12\)
\(\Rightarrow GTNN_{\left(A\right)}=-12\)
bn giải thích cho mik chỗ \(=2\left(x^2+4x-2\right)\)