a) | x - \(\frac{1}{2}\)| + | \(\frac{3}{4}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

Ta có : 

\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+8}{2010}+\frac{x+7}{2011}\)

\(\Leftrightarrow\)\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+8}{2010}+1\right)+\left(\frac{x+7}{2011}+1\right)\)

\(\Leftrightarrow\)\(\frac{x+4+2014}{2014}+\frac{x+3+2015}{2015}=\frac{x+8+2010}{2010}+\frac{x+7+2011}{2011}\)

\(\Leftrightarrow\)\(\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2010}+\frac{x+2018}{2011}\)

\(\Leftrightarrow\)\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2010}-\frac{x+2018}{2011}=0\)

\(\Leftrightarrow\)\(\left(x-2018\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)

Vì \(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2010}-\frac{1}{2011}\ne0\)

Nên \(x-2018=0\)

\(\Leftrightarrow\)\(x=2018\)

Vậy \(x=2018\)

Chúc bạn học tốt ~ 

13 tháng 6 2018

Ta có: \(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+7}{2011}+\frac{x+8}{2010}\)

\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+7}{2011}+1\right)+\left(\frac{x+8}{2010}+1\right)\)

\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2013}=\frac{x+2018}{2011}+\frac{x+2018}{2010}\)

\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2013}-\frac{x+2018}{2011}-\frac{x+2018}{2010}=0\)

\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)

\(\Rightarrow x+2018=0\Rightarrow x=-2018\)

Chúc bn hc tốt! ^_^

25 tháng 8 2016

c)     <=>    \(\frac{x+1}{2016}+1+\frac{x+2}{2015}+1\)\(+\frac{x+3}{2014}+1\)=   \(\frac{x+4}{2013}+1+\frac{x+5}{2012}+1\)\(+\frac{x+6}{2011}\)

        <=>  \(\frac{x+1+2016}{2016}+\frac{x+2+2015}{2015}+\frac{x+3+2014}{2014}\)  \(=\frac{x+4+2013}{2013}+\frac{x+5+2012}{2012}+\frac{x+6+2011}{2011}\)

        <=>     \(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\frac{x+2017}{2013}-\frac{x+2017}{2012}-\frac{x+2017}{2011}=0\)

      <=>       \(\left(x+2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)=0\)

     vì    \(\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)\)khác 0    

   =>     \(x+2017=0\) =>   \(x=-2017\)

           Vậy \(S=\left\{-2017\right\}\)

11 tháng 9 2016

Sao ấn được phân soos vậy?

17 tháng 9 2016

 A=5-3(2x+1)^2

Ta có : (2x+1)^2\(\ge\)0

\(\Rightarrow\)-3(2x-1)^2\(\le\)0

\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5

Dấu = xảy ra khi : (2x-1)^2=0

=> 2x-1=0 =>x=\(\frac{1}{2}\)

Vậy : A=5 tại x=\(\frac{1}{2}\)

Ta có : (x-1)^2 \(\ge\)0

=> 2(x-1)^2\(\ge\)0

=>2(x-1)^2+3 \(\ge\)3

=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)

Dấu = xảy ra khi : (x-1)^2 =0

=> x = 1

Vậy : B = \(\frac{1}{3}\)khi x = 1

\(\frac{x^2+8}{x^2+2}\)\(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Làm như câu B                   GTNN = 4 khi x =0 

k vs nha

7 tháng 12 2015

Bai 2: gtnn cua |x-2015|+|x-1|                           (A)

Ta thay : | x - 2015| va |x-1| \(\ge\) 0

De (A) nho nhat thi suy ra: |x-2015| = 0 => x =2015   hay |x-1| = 0 => x=1

Suy ra: A = 0+|2015-1| = 2014

  Hay:  A = |1-2015| + 0 = 2014

Vay A nho nhat bang 2014

7 tháng 12 2015

Lê Chí Công!Bạn nói dễ thì làm giúp đi, sao câu nào bạn cũng nói vậy mà có khi nào giúp đâu!

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

16 tháng 5 2017

x=-2016

23 tháng 11 2016

x=0 

k mình , thank you  

4 tháng 4 2020

PT đã cho suy ra thành

\(\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)\)

\(+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)

\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+\left(tương\right)Tựnha=0\)

Do

\(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\)

máy cái bạn tự suy ra cx thế

\(=>x^{2010}=y^{2010}=z^{2010}=t^{2010}=0=>x=y=z=t=0\)

ta có 

\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}=0+0+0+0=0\)

4 tháng 4 2020

Ta có:

\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)

<=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)

\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)=0\)(1)

Lại có: \(x^{2010};y^{2010};z^{2010};t^{2010}\ge0;\forall x,y,z,t\)

và với mọi a; b ; c ; d khác 0 có:

\(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)

\(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);

\(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);

\(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)

=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)

\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

Như vậy (1) xảy ra<=> \(x^{2010}=y^{2010}=z^{2010}=t^{2010}=0\)

<=> x = y = z = t = 0

Thay vào T ta có : T = 0

28 tháng 8 2019

a,\(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\) (1)

<=> \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)

<=> \(\left(x+1\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)

=> x+1=0 (vì \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\ne0\))

<=> x=-1

Vậy pt (1) có tập nghiệm S\(=\left\{-1\right\}\)

b, \(\frac{x+6}{2015}+\frac{x+5}{2016}+\frac{x+4}{2017}=\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2010}\)(2)

<=> \(\frac{x+6}{2015}+1+\frac{x+5}{2016}+1+\frac{x+4}{2017}+1=\frac{x+3}{2018}+1+\frac{x+2}{2019}+1+\frac{x+1}{2020}+1\)

<=> \(\frac{x+2021}{2015}+\frac{x+2021}{2016}+\frac{x+2021}{2017}-\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)

<=> \(\left(x+2021\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

=> x+2021=0(vì \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))

<=> x=-2021

Vậy pt (2) có tập nghiệm S=\(\left\{-2021\right\}\)

c,\(\frac{x+6}{2016}+\frac{x+7}{2017}+\frac{x+8}{2018}=\frac{x+9}{2019}+\frac{x+10}{2020}+1\) (3)

<=> \(\frac{x+6}{2016}-1+\frac{x+7}{2017}-1+\frac{x+8}{2018}-1=\frac{x+9}{2019}-1+\frac{x+10}{2020}-1+1-1\)

<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}=\frac{x-2010}{2019}+\frac{x-2010}{2020}\)

<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}-\frac{x-2010}{2019}-\frac{x-2010}{2020}=0\)

<=> \(\left(x-2010\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

=> x-2010=0 (vì \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))

<=> x=2010

Vậy pt (3) có tập nghiệm S=\(\left\{2010\right\}\)

d, \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\) (4)

<=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=15-1-2-3-4-5\)

<=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

<=> (x-100)(\(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\))=0

=> x -100=0(vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\))

<=> x=100

Vậy pt (4) có tập nghiệm S=\(\left\{100\right\}\)

28 tháng 8 2019

a) \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\)

\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)

\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=0-1\)

\(\Rightarrow x=-1\)

Vậy \(x=-1.\)

Mình chỉ làm câu a) thôi nhé.

Chúc bạn học tốt!

29 tháng 10 2017

chập mạch câu đó mà ko biết

29 tháng 10 2017

bạn bui le anh kia. người ta ko biết làm thì kệ người ta chứ. tự nhiên đi bảo người ta là bị chập mạch. nếu bạn là tôi, bạn bị người khác nói là bị chập mạnh thì bạn thấy thế nào?