K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2022

A=(x+2)^2+5

(x+2)^2≥0

Dấu = xay ra ⇔x=-2

Vậy GTNN của A=5<=>x=-2

4 tháng 1 2022

B=(x-2)^2+9

(x-2)^2≥0

Dấu = xay ra ⇔x=2

Vậy GTNN của B=9<=>x=2

28 tháng 10 2020

b, ta có A=2x2+3y2+4xy-2y+18

A= x2+x2+y2+y2+y2+2xy+2xy-2y+17+1

A= (x2+2xy+y2)+(x2+2xy+y2)+(y2-2y+1)+17

A=(x+y)2+(x+y)2+(y-1)2+17

Vì (x+y)2>=0; (y-1)2 >= 0; 17>0

=> A>=17

Dấu = xảy ra khi

(x+y)2=0; (y-1)2=0

=. x=y; y=1

Vậy A nhỏ nhất= 17 khi x=y=1

25 tháng 4 2018

            \(A=B\)

\(\Leftrightarrow\)\(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}=-2^2\)

\(\Leftrightarrow\)\(\frac{x+1}{2015}+1+\frac{x+2}{2014}+1+\frac{x+3}{2013}+1+\frac{x+4}{2012}+1=0\)

\(\Leftrightarrow\)\(\frac{x+2016}{2015}+\frac{x+2016}{2014}+\frac{x+2016}{2013}+\frac{x+2016}{2012}=0\)

\(\Leftrightarrow\)\(\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}\right)=0\)

\(\Leftrightarrow\)\(x+2016=0\)  (do  1/2015 + 1/2014 + 1/2013 + 1/2012  #  0)

\(\Leftrightarrow\)\(x=-2016\)

Vậy...

14 tháng 2 2020

Trl 

-Bạn đường quỳnh trang làm đúng r

Học tốt 

nhé bn

27 tháng 1 2017

a, đặt ( x2+x)=y ta có :

y2+4y=12 <=> y2+4y-12=0

<=> y2+4y+4-16 =0

<=>(y2+4y+4)-16+=0

<=> (y+2)2-16=0

<=>(y-2)(y+6)=0

<=>y-2=0 hoặc y+6=0

<=> y=2 hoặc y=-6

<=> x2+x=2 hoặc x2+x=-6

<=> x2+x -2=0 hoặc x2+x+6=0(vô lý)

<=> (x-1)(x+2)=0 <=> x-1=0 hoặc x+2=0

<=> x=1 hoặc x=-2

vậy pt có nghiệm là x=1 và x=-2

27 tháng 1 2017

b,6x4-5x3-38x2-5x+6=0

<=>6x4-18x3+13x3-39x2+x2-3x-2x+6=0

<=>6x3(x-3)+13x2(x-3)+x(x-3)-2(x-3)=0

<=>(x-3)(6x3+13x2+x-2)=0

<=>(x-3)(6x3+12x2+x2+2x-x-2)=0

<=>(x-3)(6x2(x+2)+x(x+2)-(x+2))=0

<=>(x-3)(x+2)(6x2+x-1)=0

<=>(x-3)(x+2)(3x-1)(2x+1)=0

tới đây tự làm

9 tháng 3 2020

gõ phân số ra cho mk nhìn đc ko cậu

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$