\(3\left(x-3\right)^2+\left(y-1\right)^2+2005\)

b, B=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2:

a) Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Rightarrow x^4+3x^2+2\ge2\forall x\)

Dấu '=' xảy ra khi

\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)

\(x^2\ge0\forall x\)

nên \(x^2+3\ge3>0\forall x\)

Do đó: \(x^2=0\Leftrightarrow x=0\)

Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0

b)\(B=\left(x^4+5\right)^2\)

Ta có: \(x^4\ge0\forall x\)

\(\Rightarrow x^4+5\ge5\forall x\)

\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)

Dấu '=' xảy ra khi

\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)

Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0

c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left(y+2\right)^2\ge0\forall y\)

Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2

Câu 3:

a) \(A=5-3\left(2x-1\right)^2\)

Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)

Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi

\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)

b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)

\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\)\(\frac{1}{3}\) khi x=1

c) \(C=\frac{x^2+8}{x^2+2}\)

Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\forall x\)

\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)

\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)

Dấu '=' xảy ra khi

\(x^2=0\Leftrightarrow x=0\)

Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

13 tháng 5 2020

... câu cuối bn lm dài dòng quá r ạ -)) cái dòng sra là bỏ luôn dấu GTTĐ của VT r ạ :))

13 tháng 5 2020

1 like cho sự chăm chỉ của cậu hihi

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)

25 tháng 1 2017

a) Ta có: \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)

\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+\frac{3}{4}\right|=0\\\left|x-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}=\frac{11}{20}\end{matrix}\right.\)

Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)

b) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{3}\right|+\left|z-\frac{1}{2}\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{2}{3}\right|=0\\z+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+\frac{3}{4}=0\\y-\frac{2}{3}=0\\z+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{-3}{4}\\y=\frac{2}{3}\\z=\frac{-1}{2}\end{matrix}\right.\)

Vậy \(x=\frac{-3}{4};y=\frac{2}{3};z=\frac{-1}{2}\)

d) \(\left|x+1\right|+\left|x^2-1\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+1\right|=0\\\left|x^2-1\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+1=0\\x^2-1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-1\\x=\pm1\end{matrix}\right.\)

Vậy \(x\in\left\{1;-1\right\}\)

17 tháng 2 2017

thiếu phần c) rồi bạn ơi

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

12 tháng 10 2019

Bài 1:

\(A=\frac{a+b}{b+c}.\)

Ta có:

\(\frac{b}{a}=2\Rightarrow\frac{b}{2}=\frac{a}{1}\) (1)

\(\frac{c}{b}=3\Rightarrow\frac{c}{3}=\frac{b}{1}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{b}{2}=\frac{c}{6}.\)

\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}=\frac{a+b}{3}=\frac{b+c}{8}.\)

\(\Rightarrow A=\frac{a+b}{b+c}=\frac{3}{8}\)

Vậy \(A=\frac{a+b}{b+c}=\frac{3}{8}.\)

Bài 2:

a) \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow648+280=7x+9x\)

\(\Rightarrow928=16x\)

\(\Rightarrow x=928:16\)

\(\Rightarrow x=58\)

Vậy \(x=58.\)

b) \(\frac{x+4}{20}=\frac{5}{x+4}\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow x+4=\pm10.\)

\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)

Vậy \(x\in\left\{6;-14\right\}.\)

Chúc bạn học tốt!

12 tháng 10 2019

Bài 2:

a, \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow9.72-9.x=7.x-7.40\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow-9x-7x=-280-648\)

\(\Rightarrow-16x=-648\)

\(\Rightarrow x=58\)

Vậy \(x=58\)