Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 4x2 + 8x + 6
= (2x)2 + 2.2x.2 + 4 + 2
= (2x + 2)2 + 2
Vì (2x + 2)2 \(\ge0\forall x\)
Nên (2x + 2)2 + 2 \(\ge2\forall x\)
Vậy GTNN của biểu thức là 2 khi và chỉ khi x = -1
\(4x^2-2\left|2x-1\right|-4x-5=\left(2x-1\right)^2-2\left|2x-1\right|+1-5\)
\(=\left(\left|2x-1\right|-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi \(\left|2x-1\right|=1\Leftrightarrow x=1\text{ hoặc }x=0\)
=> GTNN của y là -5
\(y=\left(\left|2x-1\right|-1\right)^2-5\)
\(-2\le x\le1\Rightarrow-5\le2x-1\le1\Rightarrow0\le\left|2x-1\right|\le5\)
\(\Rightarrow-1\le\left|2x-1\right|-1\le4\Rightarrow0\le\left(\left|2x-1\right|-1\right)^2\le16\)
\(\Rightarrow y\le16-5=11\)
Dấu "=" xảy ra khi x = -2
Vậy GTLN của y là 11.
Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b2 )( x2 + Y2 )
Ở đây hệ số của x là 1 nên a là 1.
Ta có: ( x + 2y )2 <= ( 12 + (căn2)2 ) ( x2 + ( căn 2 )2y2 )
=> 1 <= 3 ( x2 + 2y2 )
=> x2 + 2y2 >= 1/3
\(a,A=3x^2-5x+1\)
\(=3\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)-\dfrac{13}{12}\)
\(=3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\)
Với mọi giá trị của x ta có:
\(\left(x-\dfrac{5}{6}\right)^2\ge0\)
\(\Rightarrow3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\ge-\dfrac{13}{12}\)
Vậy Min \(A=-\dfrac{13}{12}\)
Để \(A=-\dfrac{13}{12}\) thì \(x-\dfrac{5}{6}=0\Rightarrow x=\dfrac{5}{6}\)
\(b,B=2x^2+5y^2-4x+2y+4xy+2017\)
\(=\left(2x^2-4x+4xy\right)+5y^2+2y+2017\)
\(=2\left(x^2-2x+2xy\right)+5y^2+2y+2017\)
\(=2\left[x^2-2x\left(1-y\right)+\left(1-y\right)^2\right]+5y^2+2y+2017+2\left(1-y\right)^2\)\(=2\left(x-1+y\right)^2+5y^2+2y+2017-2\left(1-y\right)^2\)
\(=2\left(x+y-1\right)^2+5y^2+2y+2017-2+4y-2y^2\)\(=2\left(x+y-1\right)^2+3y^2+6y+2015\)
\(=2\left(x+y-1\right)^2+3\left(y^2+2y+1\right)+2012\)
\(=2\left(x+y-1\right)^2+3\left(y+1\right)^2+2012\)
Với mọi giá trị của x ta có:
\(2\left(x+y-1\right)^2\ge0;3\left(y+1\right)^2\ge0\)
\(\Rightarrow2\left(x+y-1\right)^2+3\left(y+1\right)^2+2012\ge2012\) Vậy : Min B = 2012
Để B = 2012 thì \(\left\{{}\begin{matrix}x+y-1=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
\(A=4x^2+4x-6|2x+1|+6.\)
\(=\left(4x^2+4x+1\right)-6|2x+1|+5\)
\(=\left[\left(2x+1\right)^2-2.|2x+1|.3+9\right]-4\)
\(=\left(|2x+1|-3\right)^2-4\)
Vì \(\left(|2x+1|-3\right)^2\ge0\Rightarrow\left(|2x+1|-3\right)^2-4\ge-4\)Hay \(A\ge-4\)
Vậy giá trị nhỏ nhất của A=-4 , Dấu '=' xảy ra khi \(|2x+1|-3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)