\(-3x^2-6x-4\)

b,\(-5x^2+8x\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Các câu này chỉ có giá trị lớn nhất vì hệ số của hạng tử x^2 là số âm

23 tháng 6 2017

oh Tìm GTLN

30 tháng 7 2017

a)\(2x^2-4x+7=2x^2-4x+2+5=2\left(x^2-2x+1\right)+5=2\left(x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=1

b)\(9x^2-6x+5=\left(3x\right)^2-2.3x.1+1+4=\left(3x-1\right)^2+4\ge5\)

Dấu "=" xảy ra khi x=1/3

c)\(3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left(x^2-2.\frac{5}{6}.x+\frac{25}{36}-\frac{1}{36}\right)\)

\(=3\left[\left(x-\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Dấu "=" xảy ra khi x=5/6

mấy câu sau tương tự

30 tháng 7 2017

a) 2x2-4x+7=(2x2-2.2x.1+1)+6=(2x-1)2+6

Vì (2x-1)2 >_(lớn hơn hoặc bằng) 0

=>(2x-1)2+6>_6

=> GTNN của 2x2-4x+7=6

b, 9x2-6x+5=[(3x)2-2.3x.1+1]+4=(3x-1)2+4

Vì (3x-1)2>_0

=>(3x-1)2+4>_4

=> GTNN của 9x2-6x+5=4

30 tháng 7 2017

a) \(2x^2-4x+7=x^2+x^2-4x+4+3\)

\(=x^2+\left(x-2\right)^2+3\)

GTNN là 3

b) \(9x^2-6x+5=\left(3x\right)^2-2.3x+2+3\)

\(=\left(3x+\sqrt{2}\right)^2+3\)

Gtnn là 3

tạm thời 2 câu vậy nhé !!!

30 tháng 7 2017

a, \(A=2x^2-4x+7\)

\(=2\left(x^2-2x+1+\dfrac{5}{2}\right)\)

\(=2\left(x-1\right)^2+5\ge5\)

Dấu " = " khi \(2\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(MIN_A=5\) khi x = 1

b, \(B=9x^2-6x+5\)

\(=9x^2-6x+1+4\)

\(=\left(3x-1\right)^2+4\ge4\)

Dấu " = " khi \(\left(3x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy \(MIN_B=4\) khi \(x=\dfrac{1}{3}\)

c, d, e tương tự

2 tháng 8 2018

\(A=3x-x^2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Vậy GTLN của A là \(\frac{9}{4}\)khi x = \(\frac{3}{2}\)

\(B=7-8x-x^2=-\left(x^2+8x+16\right)+23=-\left(x+4\right)^2+23\le23\)

Vậy GTLN của B là 23 khi x = -4

\(C=x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

Vậy GTNN của C là 1 khi x = 10

\(D=3x^2-6x+11=3\left(x^2-2x+1\right)+8=3\left(x-1\right)^2+8\ge8\)

Vậy GTNN của D là 8 khi x = 1

2 tháng 8 2018

\(a,A=3x-x^2=-x^2+3x=-x^2+2.\frac{3}{2}x-\frac{9}{4}+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Vậy Max A = 9/4 <=> x = 3/2

\(b,B=7-8x-x^2=-x^2-8x+7=-x^2-2.4x-16+23=-\left(x+4\right)^2+23\ge23\)

Vậy MinB = 23 <=> x = -4

\(c,C=x^2-20x+101=x^2-2.10x+10^2+1=\left(x-10\right)^2+1\ge1\)

Vậy MinC = 1 <=> x = 10

\(d,D=3x^2-6x+11\)

\(D=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2+8=\left(\sqrt{3}x-\sqrt{3}\right)^2+8\ge8\)

Vậy MinD = 8<=> x=1

10 tháng 10 2017

******************************************************

a) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

b) \(x^3-3x+2=x^3+2x^2-2x^2-4x+x+2\)

\(=x^2\left(x+2\right)-2x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)

c) \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9\)

\(=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)

d) \(x^3+8x^2+17x+10=x^3+2x^2+6x^2+12x+5x+10\)

\(=x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+6x+5\right)=\left(x+2\right)\left(x+5\right)\left(x+1\right)\)

e) \(x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)

\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+2x+4\right)\)

f) \(x^3+3x^2+3x+2=x^3+2x^2+x^2+2x+x+2\)

\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

23 tháng 6 2017

a,Đặt \(A=-3x^2-6x-4=-3\left(x^2+2x+\dfrac{4}{3}\right)\)

\(=-3\left(x^2+2x+1+\dfrac{1}{3}\right)\)

\(=-3\left[\left(x+1\right)^2+\dfrac{1}{3}\right]\)

\(=-3\left(x+1\right)^2-1\le-1\)

Dấu " = " khi \(-3\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy \(MAX_A=-1\) khi x = -1

b, Đặt \(B=-5x^2+8x=-5\left(x^2-\dfrac{4}{5}x.2+\dfrac{16}{25}-\dfrac{16}{25}\right)\)

\(=-5\left(x-\dfrac{4}{5}\right)^2+\dfrac{16}{5}\le\dfrac{16}{5}\)

Dấu " = " khi \(-5\left(x-\dfrac{4}{5}\right)^2=0\Leftrightarrow x=\dfrac{4}{5}\)

Vậy \(MAX_B=\dfrac{16}{5}\) khi \(x=\dfrac{4}{5}\)

23 tháng 6 2017

a, \(C=-3x^2-6x-4\)

\(=>-C=3x^2+6x+4\)

\(=3\left(x^2+2x+1\right)+1\)

\(=3\left(x+1\right)^2+1\ge1\)

\(=>MIN_{-C}=1=>MAX_C=-1\Leftrightarrow x=-1\)

\(b,T=-5x^2+8x\)

\(-T=5x^2-8x=5\left(x^2-2.\dfrac{4}{5}x+\dfrac{16}{25}\right)-\dfrac{16}{5}\)

\(=\left(x-\dfrac{4}{5}\right)^2-\dfrac{16}{5}\ge\dfrac{-16}{5}\)

\(=>MIN_{-T}=\dfrac{-16}{5}=>MAX_T=\dfrac{16}{5}\Leftrightarrow x=\dfrac{4}{5}\)

21 tháng 5 2017

a, 3x + \(\frac{4}{x+1}\)=> 3x +  \(\frac{4}{x+1}\)

để BT thuộc GTNN thì x+1 thuộc U(4)

=> x+1=1(x >= - 1)

=> x= 0

21 tháng 5 2017

 b,  \(\frac{\text{x^2−8x+25}}{x}\)= (x-8)+\(\frac{25}{x}\)

=> (x-8) và 25/x min => x = 5 

6 tháng 1 2020

a) \(A=\frac{2x^2+9}{x^2+4}=\frac{\left(2x^2+8\right)+1}{x^2+4}=\frac{2\left(x^2+4\right)+1}{x^2+4}=2+\frac{1}{x^2+4}\)

Ta thấy \(x^2\ge0\forall x\)

=> \(x^2+4\ge4\forall x\)

=> \(\frac{1}{x^2+4}\le\frac{1}{4}\forall x\)

=> \(A\le\frac{1}{4}+2=\frac{9}{4}\)

\(MaxA=\frac{9}{4}\Leftrightarrow x=0\)

23 tháng 7 2017

Cái này mình giúp rồi nha<3

23 tháng 7 2017

a, \(A=9x^2-6x+5\)

\(=\left(9x^2-6x+1\right)+4\)

\(=\left(3x-1\right)^2+4\)

ta có:

\(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\forall x\)

Vậy Min A = 4

Để A = 4 thì \(3x-1=0\Rightarrow x=\dfrac{1}{3}\)

\(b,B=4x^2-5x\)

\(=\left(4x^2-5x+\dfrac{25}{16}\right)-\dfrac{25}{16}\)

\(=\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\)

TA có:

\(\left(2x-\dfrac{5}{4}\right)^2\ge\forall x\Rightarrow\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\ge-\dfrac{25}{16}\forall x\)Vậy Min B = \(-\dfrac{25}{16}\)

Để B = \(-\dfrac{25}{16}\) thì \(2x-\dfrac{5}{4}=0\Rightarrow2x=\dfrac{5}{4}\Rightarrow x=\dfrac{5}{8}\)

\(c,C=3x^2-6x\)

\(=3\left(x^2-2x+1\right)-3\)

\(=3\left(x-1\right)^2-3\)

Ta có:

\(3\left(x-1\right)^2\ge0\forall x\Rightarrow3\left(x-1\right)^2-3\ge-3\)

vậy Min C = -3

Để C = -3 thì x-1=0 => x = 1

\(d,D=5x^2-15x\)

\(=5\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{45}{4}\)

\(=5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\)

Ta có:

\(5\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)Vậy Min D = \(-\dfrac{45}{4}\)

Để \(D=-\dfrac{45}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

\(e,E=x^2+3x+4\)

\(=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

Vậy Min E = \(\dfrac{7}{4}\) khi \(x+\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

\(f,F=2x^2-4x+7\)

\(=2\left(x^2-2x+1\right)+5\)

\(=2\left(x-1\right)^2+5\ge5\forall x\)

Vậy Min F = 5 khi x - 1 =0 => x = 1

\(g,2x^2-3x=2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{8}\)

\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\forall x\)

Vậy Min G = \(\dfrac{-9}{8}\) khi \(x-\dfrac{3}{4}=0\Rightarrow x=\dfrac{3}{4}\)

\(h,H=3x^2-4x=3\left(x^2-\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}\)

\(=3\left(x-\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)

Vậy Min H = \(-\dfrac{4}{3}\) khi \(x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)