\(y=3x+\frac{2}{x+2}\left(x>-2\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

\(3x+\frac{2}{x+2}=3\left(x+2\right)+\frac{2}{x+2}-6\)                                                                                            Áp dụng BĐT Cauchy cho 2 số dương 3(x+2) và \(\frac{2}{x+2}\) ta có:                                                   \(3\left(x+2\right)+\frac{2}{x+2}\ge2\sqrt{6\frac{x+2}{x+2}}=2\sqrt{6}\)  \(\Leftrightarrow3x+\frac{2}{x-2}-6\ge2\sqrt{6}-6\)                                                                                                   Vậy GTNN của y là \(2\sqrt{6}\) -6 khi \(x=\frac{\sqrt{6}}{3}-2\)

10 tháng 7 2019

Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé

Câu 2

\(\frac{3}{2}x+\frac{6}{x}\ge6\)\(\frac{1}{2}y+\frac{8}{y}\ge4\)

\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)

Cộng các bĐT trên

=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)

MinP=19 khi x=2;y=4

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

20 tháng 8 2016

1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)

Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)

\(\Rightarrow A\ge25\)

Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)

20 tháng 8 2016

2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)

Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)

\(\Rightarrow B\ge400\)

Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)

12 tháng 2 2019

gt\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}+1=9\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}=8\)

Ta có:\(\sqrt{xy}\le\frac{x+y}{2}\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)(đúng);

\(\sqrt{x}\le\frac{x+4}{4}\Leftrightarrow x-4\sqrt{x}+4\ge0\Leftrightarrow\left(\sqrt{x}-2\right)^2\ge0\)(đúng)
\(\sqrt{y}\le\frac{y+4}{4}\Leftrightarrow\left(\sqrt{y}-2\right)^2\ge0\)(đúng)
Cộng theo vế ba BĐT ta có:\(8\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+4}{4}+\frac{y+4}{4}=\frac{3\left(x+y\right)}{4}+2\)

\(\Leftrightarrow\frac{3}{4}\left(x+y\right)\ge6\Leftrightarrow x+y\ge8\)

Lại có:\(\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{y+x}=x+y\ge8\)

Nên GTNN của P là 8 đạt được khi \(x=y=4\)

12 tháng 2 2019

Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge9\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge8\)

Theo bất đẳng thức CÔ-si:

\(8\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+4}{4}+\frac{y+4}{4}\)

\(\Rightarrow\frac{2x+2y+x+4+y+4}{4}=\frac{3x+3y+8}{4}=\frac{3\left(x+y\right)}{4}+\frac{8}{4}=\frac{3\left(x+y\right)}{4}+2\)

\(\Rightarrow\frac{3\left(x+y\right)}{4}+2\ge8\)

\(\Rightarrow\frac{3\left(x+y\right)}{4}\ge6\)

\(\Rightarrow x+y\ge8\)

Theo BĐT Cô si: \(\hept{\begin{cases}\frac{x^2}{y}+y\ge2x\\\frac{y^2}{x}+x\ge2y\end{cases}\Rightarrow\frac{x^2}{y}+y+\frac{y^2}{x}+x\ge2x+2y}\)

\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge8\)

Vậy Gía trị nhỏ nhất của P là 8 khi x = y = 4

28 tháng 8 2020

Bài làm:

Ta có: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+2+\frac{1}{x^2y^2}\)

\(=\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}+2\)

Mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow x^2y^2\le\frac{1}{16}\)

Thay vào ta tính được:

\(M\ge2\sqrt{x^2y^2\cdot\frac{1}{256x^2y^2}}+\frac{255}{256\cdot\frac{1}{16}}+2\)

\(=\frac{1}{8}+\frac{255}{16}+2=\frac{289}{16}\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

Vậy \(Min_M=\frac{289}{16}\Leftrightarrow x=y=\frac{1}{2}\)

Đánh máy xong hết lại bấm hủy-.-