Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}y-x=a>0\\z-y=b>0\end{matrix}\right.\) \(\Rightarrow z-x=a+b\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge0\\z\le2\end{matrix}\right.\) \(\Rightarrow z-x\le2\Rightarrow a+b\le2\)
Ta có: \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)^2+\frac{1}{\left(a+b\right)^2}\)
\(P\ge\frac{1}{2}\left(\frac{4}{a+b}\right)^2+\frac{1}{\left(a+b\right)^2}=\frac{9}{\left(a+b\right)^2}\ge\frac{9}{4}\)
\(P_{min}=\frac{9}{4}\) khi \(a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\)
a, ĐKXĐ: \(-1\le x;y\le1\)
Từ giả thiết ta có:
\(2-2x\sqrt{1-y^2}-2y\sqrt{1-x^2}=0\)
\(\Leftrightarrow\left(1-y^2-2x\sqrt{1-y^2}+x^2\right)+\left(1-x^2-2y\sqrt{1-x^2}+y^2\right)=0\)\(\Leftrightarrow\left(\sqrt{1-y^2}-x\right)^2+\left(\sqrt{1-x^2}-y\right)^2=0\)
\(\Leftrightarrow\left\{\begin{matrix}\sqrt{1-y^2}-x=0\\\sqrt{1-x^2}-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\sqrt{1-y^2}=x\\\sqrt{1-x^2}=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}0\le x;y\le1\\1-y^2=x^2\\1-x^2=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}0\le x;y\le1\\x^2+y^2=1\end{matrix}\right.\)
Vậy với x,y thỏa mãn hệ thức ở đề bài và \(0\le x;y\le1\) thì \(x^2+y^2=1\) (đpcm)
Câu c)
\((x+y)^3=(10x+y)^2\Leftrightarrow x+y=\left(\frac{10x+y}{x+y}\right)^2=\left(\frac{9x}{x+y}+1\right)^2\)
Vì \(x,y\in\mathbb{Z}^+\Rightarrow \frac{9x}{x+y}\in\mathbb{Z}\). Đặt \(9x=k(x+y)\)
Vì \(x,y>0\Rightarrow 0< k<9\)
Khi đó thay vào phương trình ta có
\(\left\{\begin{matrix} x+y=(k+1)^2\\ 9x=k(x+y)\end{matrix}\right.\Rightarrow 9x=k(k+1)^2\Rightarrow x=\frac{k(k+1)^2}{9}\)
Ta đi tìm \(k\) sao cho \(k(k+1)^2\vdots 9\). Do \(0< k<9\Rightarrow k=2,5,8\)
Thay vào, ta thu được bộ \((x,y)=(2,7),(20,16),(72,9)\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2y^2}+1}\ge\frac{\left(x+1\right)\left(y+1\right)^2}{xy+x+y+1}=\frac{\left(x+1\right)\left(y+1\right)^2}{\left(x+1\right)\left(y+1\right)}=y+1\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(P\ge x+y+z+3=6\)
Dấu "=" <=> x=y=z=1
\(1.\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=2-\sqrt{3}+1+\sqrt{3}=3\) \(2a.\sqrt{x^2-2x+1}=7\)
⇔ \(x^2-2x+1=49\)
⇔ \(x^2-2x-48=0\)
⇔ \(\left(x+6\right)\left(x-8\right)=0\)
⇔ \(x=8orx=-6\)
\(b.\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
⇔ \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)
⇔ \(x-5=1-x\)
⇔ \(x=3\left(KTM\right)\)
KL.............
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)