Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-\left(x^2+y^2+25+2xy-10x-10y\right)-2y^2+4y-2+9\)
\(A=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\)
\(\Rightarrow A_{max}=9\) khi \(\left\{{}\begin{matrix}y=1\\x=4\end{matrix}\right.\)
\(A_{min}\) không tồn tại
gợi ý nhé:
[-(x-y)2-10(x-y)-25] - 2(y-1)2 + 2010
= -[(x-y)+5]2 - 2(y-1)2 + 2010
tự cậu suy ra MAX nhé
chưa hiểu thì hỏi nhé
Xét mẫu: \(^{-\left(x^2-2xy+10x+3y^2-14y-1983\right)}\)
\(=-\left(x^2-2x.\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2-\left(y^2-10y+25\right)+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2-y^2+10y-25+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2+2y^2-4y-2008\right)\)
\(=-\left(\left(....\right)^2+2.\left(y^2-2y+1\right)-2010\right)\)
\(=\left(\left(...\right)^2+2.\left(y-1\right)^2-2010\right)\)
Mình không biết là đề có sai sót gì không, theo mình thì đến đây chứng minh được cái trong ngoặc >= 0 nhưng cái này lại >= -2010, bạn cứ soát lại nha nhỡ đâu có chỗ mình nhầm. Cách làm này là đúng, k cho mình nha
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
A = x2 - 2xy + 3y2 - 2x + 1997
= ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 2y2 - 2y + 1/2 ) + 3991/2
= [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 2( y2 - y + 1/4 ) + 3991/2
= [ ( x - y )2 - 2( x - y ) + 12 ] + 2( y - 1/2 )2 + 3991/2
= ( x - y - 1 )2 + 2( y - 1/2 )2 + 3991/2 ≥ 3991/2 ∀ x, y
Dấu "=" xảy ra <=> x = 3/2 ; y = 1/2
=> MinA = 3991/2 <=> x = 3/2 ; y = 1/2
\(B=x^2-2xy+3y^2-2x-10y+20\)
\(=x^2-2xy+y^2-2\left(x-y\right)+1+2y^2-12y+19\)
\(=\left(x-y\right)^2-2\left(x-y\right)+1+2\left(y^2-6y+9\right)+1\)
\(=\left(x-y-1\right)^2+2\left(y-3\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-y-1=0\\y-3=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=3\end{cases}}\)
Vậy Min \(B=1\)khi \(x=4;\)\(y=3\)
Lời giải:
$Q=x^2+3y^2+2xy-6x-14y+200$
$=(x^2+y^2+2xy)+2y^2-6x-14y+200$
$=(x+y)^2-6(x+y)+2y^2-8y+200$
$=(x+y)^2-6(x+y)+9+2(y^2-4y+4)+183$
$=(x+y-3)^2+2(y-2)^2+183\geq 0+2.0+183=183$
Vậy $Q_{\min}=183$. Giá trị này đạt được tại $x+y-3=y-2=0$
$\Leftrightarrow x=1; y=2$