\(S=\sqrt{x-1}+\sqrt{2x^2-5x+7}\)

Giải chi tiết hộ mik

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

bấm máy tính cho nhanh 

8 tháng 3 2017

mt của mk là fx 570 MS k biết bấm

Áp dụng bất đẳng thức (2) ta có

A = \(\sqrt{x-1}+\sqrt{2x^2-5x+7}\)

\(\ge\sqrt{2x^2-4x+6}=\sqrt{2\left(x-1\right)^2+4\ge2}\)

Dấu "=" xảy ra khi x = 1

Vậy MinA = 2 khi x = 1

Cbht

16 tháng 1 2016

đk: \(x\ge2\)

\(y=\sqrt{x-2}+\sqrt{x+2}\ge\sqrt{2-2}+\sqrt{2+2}=2\)

Min y = 2 <=> x = 2

Mấy bài kiểu này làm phải dựa vào đkxđ của biến 

≧❂◡❂≦≧❂◡❂≦≧❂◡❂≦

16 tháng 1 2016

\(đk:x\ge2\)

\(\sqrt{x-2}+\sqrt{2+x}\ge\sqrt{2-2}+\sqrt{2+2}=2\)

Min = 2 khi x = 2

Mấy bài kiểu này phải dựa vào đk xác định

16 tháng 8 2017

mọi người jup mình giải đi khó wá

1 bài thui cx đc

13 tháng 6 2018

Chưa học tới nên sai thì thoi nhé :) 

\(a)\) ĐKXĐ : \(1-16x^2\ge0\)

\(\Leftrightarrow\)\(1^2-\left(4x\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(1+4x\right)\left(1-4x\right)\ge0\)

TH1 : \(\hept{\begin{cases}1+4x\ge0\\1-4x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{4}\\x\le\frac{1}{4}\end{cases}\Leftrightarrow}\frac{-1}{4}\le x\le\frac{1}{4}}\)

TH2 : \(\hept{\begin{cases}1+4x\le0\\1-4x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{-1}{4}\\x\ge\frac{1}{4}\end{cases}}\) ( loại ) 

Vậy ĐKXĐ : \(\frac{-1}{4}\le x\le\frac{1}{4}\)

Chúc bạn học tốt ~ 

24 tháng 8 2020

Lần sau đăng tách ra

24 tháng 8 2020

Cảm ơn bạn nhiều