\(\sqrt{x\left(x+1\right)\left(x+2\right)\left(x+3\right)+5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Đặt \(F=\sqrt{x\left(x+1\right)\left(x+2\right)\left(x+3\right)+5}\)

\(=\sqrt{\left(x^2+3x\right)\left(x^2+3x+2\right)+5}\left(#\right)\)

# đặt \(t=x^2+3x\) ta có

\(\left(#\right)=\sqrt{t\cdot\left(t+2\right)+5}=\sqrt{\left(t+1\right)^2+4}\)

(#) đạt giá trị nhỏ nhất của F=2 khi t+1=0 hay t=-1

Vậy \(F_{min}=2\)  khi \(x=\frac{-3\pm\sqrt{5}}{2}\)

16 tháng 11 2016

Bài 1:

\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)

\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)

Dấu = khi \(x=\sqrt{\frac{3}{2}}\)

Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)

\(A=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)

\(\Leftrightarrow A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)

Đặt \(x^2-9x+14=y\)

\(\Rightarrow A=\left(y-6\right)\left(y+6\right)+2002\)

\(\Leftrightarrow A=y^2-36+2002\)

\(\Leftrightarrow A=y^2+1966\ge1966\)

Dấu "=" xảy ra khi

 \(x^2-9x+14=0\)

\(\Leftrightarrow x=2,7\)

19 tháng 5 2018

Áp dụng BĐT AM-GM ta có:

\(\frac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2y^2}+1}\ge\frac{\left(x+1\right)\left(y+1\right)^2}{xy+x+y+1}=\frac{\left(x+1\right)\left(y+1\right)^2}{\left(x+1\right)\left(y+1\right)}=y+1\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(P\ge x+y+z+3=6\)

Dấu "=" <=> x=y=z=1

11 tháng 9 2016

\(A=\sqrt{\left(x-2\right)\left(x-1\right)x\left(x+1\right)+5}\)

\(=\sqrt{\left(x^2-x-2\right)\left(x^2-x\right)+5}\)

Đặt \(t=x^2-x\) ta đc:

\(A=\sqrt{\left(t-2\right)t+5}=\sqrt{t^2-2t+5}\)

\(=\sqrt{\left(t-1\right)^2+4}\ge\sqrt{4}=2\)

Dấu = khi \(t=1\Leftrightarrow x^2-x=1\Leftrightarrow x=\pm\frac{1}{2}+\frac{\sqrt{5}}{2}\)

Vậy....

b)\(B=\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}\)

\(=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}\)

\(=\left|x-2\right|+\left|x+3\right|\)

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2\right|+\left|x+3\right|=\left|x-2\right|+\left|-x-3\right|\ge\left|x-2+\left(-x\right)-3\right|=5\)

Dấu = khi \(\left(x-2\right)\left(x+3\right)\ge0\)\(\Rightarrow-3\le x\le2\)

\(\Rightarrow\hept{\begin{cases}-3\le x\le2\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=2\end{cases}}\)

Vậy....

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

17 tháng 3 2019

nhóm x với x + 3 ; x + 1 và x + 2 nha 

17 tháng 3 2019

\(F=\sqrt{x\left(x+1\right)\left(x+2\right)\left(x+3\right)+5}=\sqrt{\left(x^2+3x\right)\left(x^2+3x+2\right)+5}\)    ( * )

*Đặt  \(t=x^2+3x\)Ta có :

( * ) \(=\sqrt{t.\left(t+2\right)+5}=\sqrt{\left(t+1\right)^2+4}\)

( * )  Đạt GTNN của F khi bằng 2 khi \(t+1=0\) hay \(t=-1\)

Vậy \(^{minF=2\Leftrightarrow x=\frac{-3\pm\sqrt{5}}{2}}\)

19 tháng 7 2018

A = \(\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}\)

\(\sqrt{\left(\sqrt{x-3}-1\right)^2+2}\)\(\ge\)\(\sqrt{0+2}\)=\(\sqrt{2}\)

''='' <=> x = 4

=> Min A = \(\sqrt{2}\)và x = 4

B = |x-2011| + |x-1|

TH1: x \(\le\)1

=> B = 2012 - 2x \(\ge\)2010   ''='' <=> x = 1

TH2: 1\(\le\)x\(\le\)2011

=> B = x - 1 + 2011 - x = 2010 với mọi x t/m đkiện

TH3: x \(\ge\)2011

=> B = 2x - 2012 \(\ge\)2010 ''='' <=> x = 2011

Vậy Min B = 2010 <=> 1\(\le\)x\(\le\)2011

27 tháng 10 2019

a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)

Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)

\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)

Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok