Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(-\sqrt{15}\le x\le\sqrt{15}\)
Đặt \(15-x^2=a\ge0\)
\(\sqrt{10+a}-\sqrt{a}=2\Leftrightarrow\sqrt{10+a}=2+\sqrt{a}\)
\(\Leftrightarrow10+a=a+4+4\sqrt{a}\)
\(\Leftrightarrow2\sqrt{a}=7\Rightarrow a=\frac{49}{4}\Rightarrow15-x^2=\frac{49}{4}\)
\(\Rightarrow x^2=\frac{11}{4}\Rightarrow x=\pm\frac{\sqrt{11}}{2}\)
b/ ĐKXĐ: \(x\ge-\frac{1}{3}\)
Do \(\sqrt{3x+1}+1>0\) , nhân cả 2 vế của pt với nó và rút gọn ta được:
\(3x\sqrt{3x+10}=3x\left(\sqrt{3x+1}+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\Rightarrow x=0\\\sqrt{3x+10}=\sqrt{3x+1}+1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow3x+10=3x+2+2\sqrt{3x+1}\)
\(\Leftrightarrow\sqrt{3x+1}=4\Rightarrow3x+1=16\)
c/ ĐKXĐ: ...
\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
d/ Đề đúng thế này thì nghĩ ko ra cách giải :(
Nếu bạn tinh mắt một chút sẽ thấy:
Câu a: \(5\sqrt{2x-1}+2\sqrt{2x-1}-3\sqrt{x}=6\sqrt{2x-1}-2\sqrt{x}\)
Tương đương \(\sqrt{2x-1}=\sqrt{x}\Leftrightarrow\hept{\begin{cases}2x-1=x\\x\ge0\end{cases}}\Leftrightarrow x=1\).
Câu b: \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\).
Tương đương \(\sqrt{x-5}=\sqrt{1-x}\Leftrightarrow\hept{\begin{cases}x\le1\\x-5=1-x\end{cases}}\) (vô nghiệm)
Câu c: \(\sqrt{\left(x+3\right)\left(x-3\right)}-2\sqrt{x-3}=0\)
Tương đương \(\orbr{\begin{cases}x-3=0\\\sqrt{x+3}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Ấy chết! Sai ngu ở pt c rồi. Không có nghiệm \(x=1\) nha bạn.
\(-----------\)
Đặt \(\alpha=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\)và \(t=\sqrt{x}\) \(\Rightarrow\) \(\hept{\begin{cases}\alpha>0\\t>0\end{cases}\left(i\right)}\) với mọi \(x>0\)
Khi đó, ta biểu diễn lại \(\alpha\) dưới dạng biến số \(t\) như sau:
\(\alpha=\frac{4t^4+9t^2+18t+9}{4t^3+4t^2}=\frac{3\left(4t^3+4t^2\right)+\left(4t^4-12t^3-3t^2+18t+9\right)}{4t^3+4t^2}\)
nên \(\alpha=3+\frac{\left(2t^2-3t-3\right)^2}{4t^3+4t^2}\ge0\) với mọi \(t>0\) \(\Rightarrow\) \(\hept{\begin{cases}4t^3+4t^2>0\\2t^2-3t-3\ge0\end{cases}}\) (do \(\Delta_t>0\) )
Dấu \("="\) xảy ra khi và chỉ khi \(2t^2-3t-3=0\)
Ta thành lập biệt thức \(D=b^2-4ca\) với tập xác định của pt là \(t\in\left(0;\infty\right)\) như sau:
\(\Delta_t=3^2+4.2.3=33\)
Do đó, ta tính được \(t_1=\frac{3-\sqrt{33}}{4};\) \(t_2=\frac{3+\sqrt{33}}{4}\)
Nhưng ta chỉ chấp nhận
\(t=\frac{3+\sqrt{33}}{4}\) (do điều kiện \(\left(i\right)\) ) làm nghiệm duy nhất của pt.
\(\Rightarrow\) \(x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
\(-----------\)
Mặt khác, ta lại áp dụng bđt \(AM-GM\) loại hai cho bộ số với hai số thực không âm gồm \(\left(\frac{\alpha}{9};\frac{1}{\alpha}\right)\) , ta có:
\(A=\alpha+\frac{1}{\alpha}=\left(\frac{\alpha}{9}+\frac{1}{\alpha}\right)+\frac{8\alpha}{9}\ge2\left(\frac{\alpha}{9}.\frac{1}{\alpha}\right)^{\frac{1}{2}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}\alpha=3\\\frac{\alpha}{9}=\frac{1}{\alpha}\end{cases}\Leftrightarrow}\) \(\alpha=3\) \(\Leftrightarrow\) \(x=\frac{21+3\sqrt{33}}{8}\)
Vậy, \(A_{min}=\frac{10}{3}\) \(\Leftrightarrow\) \(x=\frac{21+3\sqrt{33}}{8}\)
Điều kiện x>0
Đặt a = 4x2 + 9x + 18 √x +9
b = 4x√x + 4x
Từ đó ta có A = a/b + b/a >= 2
Vậy giá trị nhỏ nhất là A = 2 khi a/b = b/a
Phần còn lại bạn tự làm nha
a)\(A=\sqrt{25}-\sqrt{x^2-4x+4}\)
\(=5-\sqrt{\left(x-2\right)^2}\)
Thấy: \(\sqrt{\left(x-2\right)^2}\ge0\)\(\Rightarrow-\sqrt{\left(x-2\right)^2}\le0\)
\(\Rightarrow A=5-\sqrt{\left(x-2\right)^2}\le5\)
Khi \(x=2\)
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):
\(B=\sqrt{\left(x-5\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\left|x-5\right|+\left|x-6\right|\)\(=\left|x-5\right|+\left|6-x\right|\)
\(\ge\left|x-5+6-x\right|=1\)
Khi \(5\le x\le6\)
a/ \(\left|A+B\right|\le\left|A\right|+\left|B\right|\)
\(\Leftrightarrow\left(\left|A+B\right|\right)^2\le\left(\left|A\right|+\left|B\right|\right)^2\)
\(\Leftrightarrow AB\le\left|A\right|.\left|B\right|\) (luôn đúng)
Đẳng thức xảy ra khi \(A.B\ge0\)
b/ \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
Đẳng thức xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\Leftrightarrow-2\le x\le3\)
Vậy minM = 5 tại \(-2\le x\le3\)
c/ \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\) (bạn tự tìm đkxđ)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|4-x\right|=\left|x+9\right|\)
Áp dụng BĐT ở a) cho vế trái : \(\left|2x+5\right|+\left|4-x\right|\ge\left|2x+5+4-x\right|=\left|x+9\right|\)
Đẳng thức xảy ra khi \(\left(2x+5\right)\left(4-x\right)\ge0\Leftrightarrow-\frac{5}{2}\le x\le4\)
Vậy nghiệm của phương trình là \(-\frac{5}{2}\le x\le4\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2