Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(S=\frac{1}{x}+\frac{1}{4y}+\frac{1}{16z}=\frac{1}{x}+\frac{\frac{1}{4}}{y}+\frac{\frac{1}{16}}{z}\ge\frac{\left(1+\frac{1}{2}+\frac{1}{4}\right)^2}{x+y+z}=\frac{\frac{49}{16}}{1}=\frac{49}{16}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x=\frac{16}{21}\\y=\frac{4}{21}\\z=\frac{1}{21}\end{cases}}\). Vậy GTNN của S = 49/16
nếu qua hạn nộp cô chưa chữa cho bn mình sẽ giúp :) giờ quá bận :)
1)
Điều kiện: \(x\geq \frac{-1}{2}\)
Bình phương hai vế:
\(x^2+4=(2x+1)^2=4x^2+4x+1\)
\(\Leftrightarrow 3x^2+4x-3=0\)
\(\Leftrightarrow x=\frac{-2\pm \sqrt{13}}{3}\)
Do \(x\geq -\frac{1}{2}\Rightarrow x=\frac{-2+\sqrt{13}}{3}\) là nghiệm duy nhất của pt.
2)
a) \(x^2+x+12\sqrt{x+1}=36\) (ĐK: \(x\geq -1\) )
\(\Leftrightarrow (x^2+x-12)+12(\sqrt{x+1}-2)=0\)
\(\Leftrightarrow (x-3)(x+4)+\frac{12(x-3)}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow (x-3)\left[x+4+\frac{12}{\sqrt{x+1}+2}\right]=0\)
Do \(x\geq -1\Rightarrow x+4+\frac{12}{\sqrt{x+1}+2}\geq 3+\frac{12}{\sqrt{x+1}+2}>0\)
Do đó \(x-3=0\Leftrightarrow x=3\) (thỏa mãn)
Vậy pt có nghiệm x=3
b) Đặt \(\left\{\begin{matrix} \sqrt{x^2+7}=a\\ x+4=b\end{matrix}\right.\)
PT tương đương:
\(x^2+7+4(x+4)-16=(x+4)\sqrt{x^2+7}\)
\(\Leftrightarrow a^2+4b-16=ab\)
\(\Leftrightarrow (a-4)(a+4)-b(a-4)=0\)
\(\Leftrightarrow (a-4)(a+4-b)=0\)
+ Nếu \(a-4=0\Leftrightarrow \sqrt{x^2+7}=4\Leftrightarrow x^2=9\Leftrightarrow x=\pm 3\) (thỏa mãn)
+ Nếu \(a+4-b=0\Leftrightarrow a=b-4\)
\(\Leftrightarrow \sqrt{x^2+7}=x\)
\(\Rightarrow x\geq 0\). Bình phương hai vế thu được: \(x^2+7=x^2\Leftrightarrow 7=0\) (vô lý)
Vậy pt có nghiệm \(x=\pm 3\)
Câu 3:
Ta có \(M=\frac{x^2+2000x+196}{x}\)
\(\Leftrightarrow M=x+2000+\frac{196}{x}\)
Áp dụng BĐT AM-GM ta có: \(x+\frac{196}{x}\geq 2\sqrt{196}=28\)
\(\Rightarrow M=x+\frac{196}{x}+2000\geq 28+2000=2028\)
Vậy M (min) =2028. Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{196}{x}\\ x>0\end{matrix}\right.\Rightarrow x=14\)