\(P=a-\sqrt{a}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 7 2019

Câu 1:

\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)

\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)

Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm

\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2019

Câu 2:

\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)

Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định

\(\Rightarrow 2-(a-1)^2\leq 2\)

\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)

Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)

11 tháng 11 2018

\(P=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{a-4}+\frac{3+2\sqrt{a}}{2-\sqrt{a}}-\frac{2-3\sqrt{a}}{\sqrt{a+2}}\)

\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\frac{3+2\sqrt{a}}{\sqrt{a}-2}-\frac{2-3\sqrt{a}}{\sqrt{a}+2}\)

\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)-\left(3+2\sqrt{a}\right)\left(\sqrt{a}+2\right)-\left(2-3\sqrt{a}\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{16\sqrt{a}-a-3\sqrt{a}-6-2a-4\sqrt{a}-2\sqrt{a}+4+3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}-2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}+2}\)

11 tháng 11 2018

b,Với ĐKXĐ,ta có: \(P=\frac{1}{\sqrt{a}-2}\)

Để P = 1/2

thì: \(\frac{1}{\sqrt{a}-2}=\frac{1}{2}\)

\(\Leftrightarrow\sqrt{a}-2=2\)

\(\Leftrightarrow\sqrt{a}=4\)

\(\Leftrightarrow a=16\left(tm\right)\)

19 tháng 11 2019

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)

Tương tự cộng vế theo vế thì 

\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)

bài 4 có trên mạng nha chị.tí e làm cách khác

bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.

19 tháng 11 2019

e nhầm đoạn này r

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì 

\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ

Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.

25 tháng 8 2017

   Dễ thấy  b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4

Biến đổi  P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x

                               = (x2 – 2)2 – x(x2 – 2) – 6x2

          Từ đó  Q(y) = y2 – xy – 6x2

          Tìm m, n sao cho  m.n = - 6x2 và m + n = - x  chọn m = 2x, n = -3x

          Ta có:  Q(y) = y2 + 2xy – 3xy – 6x2

                             = y(y + 2x) – 3x(y + 2x)

                             = (y + 2x)(y – 3x)

          Do đó:  P(x) = (x2 + 2x – 2)(x2 – 3x – 2).

     * Nếu đa thức P(x) có chứa ax4 thì có thể xét đa thức Q(x) = P(x)/a theo cách trên.

25 tháng 8 2017

cái j vậy pn

18 tháng 10 2019

đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

\(\frac{x^2}{y-2}+\frac{y^2}{z-2}+\frac{z^2}{x-2};\)áp dụng bdt co-sy \(\frac{x^2}{y-2}+4\left(y-2\right)\ge2.\sqrt{x^2.4}=4x\)

làm tương tự với \(\frac{y^2}{z-2}+4\left(z-2\right)\ge4y;\frac{z^2}{x-2}+4\left(x-2\right)\ge4x\)

=> M +4(x+y+z -6) \(\ge4\left(x+y+z\right)\)<=> M \(\ge24\)

dấu '=' khi x=y=z=4 hay a=b=c = 16