Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) A = x2 + 2y2 - 6x + 8y + 25
A = ( x2 + 6x + 9 ) + 2( y2 + 4y + 4 ) + 8
A = ( x + 3 )2 + 2( y + 2 )2 + 8 > 8
Dấu " = " xảy ra <=> x = -3 ; y = -2.
Vậy AMin = 8 khi x = -3; y = -2
Mấy câu sau tương tự, tự giải theo, bh duyệt bài bên lazi đây,
A = 2x2 + y2 - 2xy - 2y + 2000 = (x2 - 2xy + y2) + 2(x - y) + 1 + (x2 + 2x + 1) + 1998
= (x - y)2 + 2(x - y) + 1 + (x + 1)2 + 1998 = (x - y + 1)2 + (x + 1)2 1998 \(\ge\)1998 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\x+1=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x+1\\z=-1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
Vậy MinA = 1998 khi x = -1 và y = .0
b) B = x2 + 5y2 - 2xy + 6x - 18y + 50 = (x2 - 2xy + y2) + 6(x - y) + 9 + (4y2 - 12y + 9) + 32
= (x - y)2 + 6(x - y) + 9 + (2y - 3)2 + 32 = (x - y + 3)2 + (2y - 3)2 + 32 \(\ge\)32 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\)<=> \(\hept{\begin{cases}x=y-3\\y=\frac{3}{2}\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy MinB = 32 khi x = -3/2 và y = 3/2
c) C = 3x2 + x + 4 = 3(x2 + 1/3x + 1/36) + 47/12 = 3(x + 1/6)2 + 47/12 > = 47/12 với mọi x
Dấu "=" xảy ra <=> x + 1/6 = 0 <=> x = -1/6
Vậy MinC = 47/12 khi x = -1/6
A = 2y2 + x2 - 2xy - 2y + 2000 ( vầy mới tính được bạn nhé ;-; )
= ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + 1999
= ( x - y )2 + ( y - 1 )2 + 1999
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(y-1\right)^2+1999\ge1999\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-1=0\end{cases}}\Leftrightarrow x=y=1\)
=> MinA = 1999 <=> x = y = 1
B = x2 + 5y2 - 2xy + 6x - 18y + 50
= ( x2 - 2xy + y2 + 2x - 6y + 9 ) + ( 4y2 - 12y + 9 ) + 32
= [ ( x2 - 2xy + y2 ) + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32
= [ ( x - y )2 + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32
= ( x - y + 3 ) + ( 2y - 3 )2 + 32
\(\hept{\begin{cases}\left(x-y+3\right)^2\ge0\forall x,y\\\left(2y-3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y+3\right)^2+\left(2y-3\right)^2+32\ge32\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
=> MinB = 32 <=> x = -3/2 ; y = 3/2
C = 3x2 + x + 4
= 3( x2 + 1/3x + 1/36 ) + 47/12
= 3( x + 1/6 )2 + 47/12 ≥ 47/12 ∀ x
Đẳng thức xảy ra <=> x + 1/6 = 0 => x = -1/6
=> MinC = 47/12 <=> x = -1/6
= x^2 - 2xy + y^2 + 2x - 2y + x^2 - 2x + 12
= ( x- y)^2 + 2 ( x - y) + x^2 - 2x + 1 + 11
= ( x- y)^2 + 2 ( x- y ) + 1 + (x - 1 )^2 + 10
= ( x - y + 1 )^2 + ( x- 1 )^2 + 10
Vậy GTNN là 10 khi x - 1 = 0 và x - y + 1 = 0
=> x = 1 và 2 - y = 0
=>x = 1 và y = 2
A = 2x2 + 6x = 2( x2 + 3x + 9/4 ) - 9/2 = 2( x + 3/2 )2 - 9/2 ≥ -9/2 ∀ x
Dấu "=" xảy ra khi x = -3/2
=> MinA = -9/2 <=> x = -3/2
B = x2 - 2x + y2 - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 2
=> MinB = 1 <=> x = 1 ; y = 2
C = x2 - 2xy + 6y2 - 12x + 2y + 45
= ( x2 - 2xy + y2 - 12x + 12y + 36 ) + ( 5y2 - 10y + 5 ) + 4
= [ ( x2 - 2xy + y2 ) - ( 12x - 12y ) + 36 ] + 5( y2 - 2y + 1 ) + 4
= [ ( x - y )2 - 2( x - y ).6 + 62 ] + 5( y - 1 )2 + 4
= ( x - y - 6 )2 + 5( y - 1 )2 + 4 ≥ 4 ∀ x, y
Dấu "=" xảy ra khi x = 7 ; y = 1
=> MinC = 4 <=> x = 7 ; y = 1
D = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= ( x2 + 5x - 6 )( x2 + 5x + 6 )
= ( x2 + 5x )2 - 36 ≥ -36 ∀ x
Dấu "=" xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinD = -36 <=> x = 0 hoặc x = -5
1) \(A=2x^2+6x=2\left(x^2+3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(2\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=-\frac{3}{2}\)
Vậy Min(A) = -9/4 khi x = -3/2
2) \(B=x^2-2x+y^2-4y+6\)
\(B=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(B=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy Min(B) = 1 khi x = 1 và y = 2
3) \(C=x^2-2xy+6y^2-12x+2y+45\)
\(C=\left(x^2-2xy+y^2\right)-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)
\(C=\left(x-y\right)^2-12\left(x-y\right)+36+5\left(y-1\right)^2+4\)
\(C=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-6\right)^2=0\\5\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)
Vậy Min(C) = 4 khi x = 7 và y = 1
4) \(D=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(D=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy Min(D) = -36 khi x = 0 hoặc x = -5
P=2x2+y2-2xy-6x+2y+2024
=>2P=4x2+2y2-4xy-12x+4y+4048
=(2x-y-3)2+y2-2y+1+4038
=(2x-y-3)2+(y-1)2+4038> hoặc = 4038
Dấu = xảy ra <=>2x-y-3=0 và y-1=0=>x=2;y=1=>2p=4038=>p=2019
Vậy Pmin=2019<=>x=2;y=1
Ta có:
P = 2x2 + y2 - 2xy - 6x + 2y + 2024
P = (x2 - 2xy + y2) - 2(x - y) + 1 + (x2 - 4x + 4) + 2019
P = [(x - y)2 - 2(x - y) + 1] + (x - 2)2 + 2019
P = (x - y - 1)2 + (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x-1\\x=2\end{cases}}\) <=> \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy MinP = 2019 <=> x = 2 và y = 1