K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

\(P=x^2+10y^2-6xy+4x-14y+2023\)

\(P=x^2-6xy+9y^2+4x-12y+y^2-2y+1+2022\)

\(P=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(y-1\right)^2+2018\)

\(P=\left(x-3y+2\right)^2+\left(y-1\right)^2+2018\ge2018\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

NV
19 tháng 6 2019

\(P=x^2+\left(3y\right)^2+4-6xy+4x-12y+y^2-2y+1+2018\)

\(=\left(x-3y+2\right)^2+\left(y-1\right)^2+2018\)

\(\Rightarrow...\)

16 tháng 7 2019

a) Ta có: C = x2 + x - 2 = (x2 + x + 1/4) - 9/4 = (x + 1/2)2 - 9/4

Ta luôn có: (x + 1/2)2 \(\ge\)\(\forall\)x

=> (x + 1/2)2 - 9/4 \(\ge\)-9/4 \(\forall\)x

Dấu "=" xảy ra khi: x + 1/2 = 0 <=> x = -1/2

Vậy Min của C = -9/4 tại x = -1/2

b) Ta có: D = x2 + y2 + x - 6y + 5 = (x2 + x + 1/4) + (y2 - 6y + 9) - 17/4 = (x + 1/2)2 + (y - 3)2 - 17/4

Ta luôn có: (x + 1/2)2 \(\ge\)\(\forall\)x

          (y - 3)2 \(\ge\)\(\forall\)y

=> (x + 1/2)2 + (y - 3)2 - 17/4 \(\ge\)-17/4 \(\forall\)x; y

Dấu'=" xảy ra khi: \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)

Vậy Min của D =  -17/4 tại \(\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)

16 tháng 7 2019

c) Ta có: E = x2 + 10y2 - 6xy - 10y + 26 = (x2 - 6xy + 9y2) + (y2 - 10y + 25) + 1 = (x - 3y)2 + (y - 5)2 + 1

Ta luôn có: (x - 3y)2 \(\ge\)\(\forall\)x;y

     (y - 5)2 \(\ge\)\(\forall\)y

=> (x - 3y)2 + (y - 5)2 + 1 \(\ge\) 1 \(\forall\)x; y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-3y=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3y\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3.5=15\\y=5\end{cases}}\)

Vậy Min của E = 1 tại x = 15 và y = 5

1 tháng 8 2018

3)

e)

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

1 tháng 8 2018

3)

b)-x^2+4x-5=-(x^2-4x+5)

=-(x^2-2.2x+2^2)-1

=-(x+2)^2-1

vì -(x+2) nhỏ hơn hoặc bằng 0 \(\forall x\)

=>-(x+2)^2-1<1 \(\forall\)x

31 tháng 7 2019

\(P=x^2+2y^2-2xy-8y+2018\)

   \(=\left(x+y\right)^2+\left(y-4\right)^2+2002\ge2002\forall x;y\) 

Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y=4\end{cases}}}\)

\(\Rightarrow x=-4\)

Vậy minP=2002 tại  x=-4;y=4

                     

31 tháng 7 2019

a) \(P=x^2+2y^2-2xy-8y+2018\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-8y+16\right)+2012\)

\(=\left(x-y\right)^2+\left(y-4\right)^2+2012\)

Vì\(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y\\\left(y-4\right)^2\ge0;\forall x,y\end{cases}}\)

\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2+2012\ge0+2012;\forall x,y\)

Hay \(P\ge2012;\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)

                        \(\Leftrightarrow x=y=4\)

Vậy MIN P=2012 \(\Leftrightarrow x=y=4\)

NV
16 tháng 8 2020

\(C=2\left(x-\frac{5}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\Rightarrow C_{min}=\frac{7}{8}\)

\(D=\left(x^2+4xy+4y^2\right)+\left(y^2+y+\frac{1}{4}\right)+\frac{8083}{4}\)

\(D=\left(x+2y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{8083}{4}\ge\frac{8083}{4}\)

\(E=\frac{1}{2}\left(4x^2+y^2+\frac{9}{4}-4xy-6x+3y\right)+\frac{1}{2}\left(y^2+y+\frac{1}{4}\right)+\frac{15}{4}\)

\(E=\frac{1}{2}\left(2x-y-\frac{3}{2}\right)^2+\frac{1}{2}\left(y+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)

\(A=-\left(x-2\right)^2+11\le11\)

\(B=-\left(x+\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

\(C=-\left(x-3y\right)^2-\left(y-2\right)^2+11\le11\)

17 tháng 9 2018

a) \(A=9x^2-6x+3\)

\(A=\left(3x\right)^2-2.3x+1+2\)

\(A=\left(3x-1\right)^2+2\)

\(\left(3x-1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(3x-1\right)^2+2\ge2\) với mọi x

\(\Rightarrow Amin=2\Leftrightarrow3x-1=0\)

\(\Rightarrow3x=1\)

\(\Rightarrow x=\dfrac{1}{3}\)

Vậy giá trị nhỏ nhất của biểu thức là 2 khi x = 1/3

b) \(B=x^2-3x\)

\(B=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\)

\(B=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\)

\(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\) với mọi x

\(\Rightarrow Bmin=-\dfrac{9}{4}\Leftrightarrow x-\dfrac{3}{2}=0\)

\(\Rightarrow x=\dfrac{3}{2}\)

Vậy giá trị nhỏ nhất của biểu thức là -9/4 khi x = 3/2

c) \(C=x^2+8x+10\)

\(C=x^2+2.x.4+16-6\)

\(C=\left(x+4\right)^2-6\)

\(\left(x+4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+4\right)^2-6\ge-6\) với mọi x

\(\Rightarrow Cmin=-6\Leftrightarrow x+4=0\)

\(\Rightarrow x=-4\)

Vậy giá trị nhỏ nhất của biểu thức là -6 khi x = -4

d) \(D=x^2-2x+15+y^2+3y\)

\(D=x^2-2x+1+y^2+2.y.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+14\)

\(D=\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\)

\(\left(x-1\right)^2\ge0\) với mọi x

\(\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\ge\dfrac{47}{4}\) với mọi x,y

\(\Rightarrow Dmin=\dfrac{47}{4}\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy giá trị của biểu thức là 47/4 khi x = 1 và y = -3/2

e) \(E=2x^2+4xy+8x+5y^2-4y-100\)

\(E=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(E=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

\(\left(x+2y\right)^2\ge0\) với mọi x,y

\(\left(x+4\right)^2\ge0\) với mọi x

\(\left(y-2\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\) với mọi x,y

\(\Rightarrow Emin=-120\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\x+4=0\\y-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của biểu thức là -120 khi x = -4 ; y = 2

f) \(F=x^2-6xy+26+10y^2-10y\)

\(F=x^2-6xy+9y^2+y^2-10y+25+1\)

\(F=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+1\)

\(F=\left(x-3y\right)^2+\left(y-5\right)^2+1\)

\(\left(x-3y\right)^2\ge0\) với mọi x,y

\(\left(y-5\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2+1\ge1\) với mọi x,y

\(\Rightarrow Fmin=1\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y-5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3y\Rightarrow x=15\\y=5\end{matrix}\right.\)

Vậy giá trị của biểu thức là 1 khi x = 15 và y = 5