Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tương đương: \(\left(x^2+2xy+y^2\right)+y^2+3y-4=0\)
\(\Leftrightarrow\left(x+y\right)^2=4-y^2-3y\)
do \(VT\ge0\) \(\Rightarrow VP\ge0\)\(\Rightarrow4-y^2-3y\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)
\(\Leftrightarrow4y^2+12y-16\le0\)\(\Leftrightarrow\left(2y+3\right)^2-25\le0\Leftrightarrow\left(2y+3\right)^2\le25\)
\(\Rightarrow-5\le2y+3\le5\Rightarrow-4\le y\le1\)
Đến đây thì thế vào pt là tìm được x
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
\(\sqrt{x^2+y^2-2xy+2x-2y+5}+2y^2-8y+2015\)
\(=\sqrt{\left(x^2+y^2-2xy\right)+2\left(x-y\right)+1+4}+2\left(y^2-4y+4\right)+2007\)\(=\sqrt{\left(x-y+1\right)^2+4}+2\left(y-2\right)^2+2007\ge2007\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(F=\frac{1}{9}\left(9x^2+9y^2+4-18xy-12x+12y\right)+\frac{4}{9}\left(9x^2-6x+1\right)+\frac{1}{9}\left(9y^2+6y+1\right)+2\)
\(F=\frac{1}{9}\left(3x-3y-2\right)^2+\frac{4}{9}\left(3x-1\right)^2+\frac{1}{9}\left(3y+1\right)^2+2\ge2\)
\(F_{min}=2\) khi \(\left\{{}\begin{matrix}x=\frac{1}{3}\\y=-\frac{1}{3}\end{matrix}\right.\)
\(D=x^2+y^2+z^2-2xy+2zx-2yz+y^2+2z^2+2yz-2\left(x-y+z\right)-4y-6z+19\)
\(=\left(x-y+z\right)^2-2\left(x-y+z\right)+1+\left(y^2+z^2+2yz-4y-4z+4\right)+z^2-2z+1+13\)
\(=\left(x-y+z-1\right)^2+\left(y+z-2\right)^2+\left(z-1\right)^2+13\ge13\)
\(D_{min}=13\) khi \(\left\{{}\begin{matrix}x-y+z=1\\y+z=2\\z=1\end{matrix}\right.\) \(\Rightarrow x=y=z=1\)
\(M=x^2+2y^2+2xy-2x-3y+1\)
=> \(M=x^2+2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2-3y+1\)
=> \(M=\left(x+y-1\right)^2-y^2+2y-1+2y^2-3y+1\)
=> \(M=\left(x+y-1\right)^2+y^2-y\)
=> \(M=\left(x+y-1\right)^2+y^2-2y\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\)
Có \(\left(x+y-1\right)^2\ge0\)với mọi x, y
\(\left(y-\frac{1}{2}\right)^2\ge0\)với mọi y
=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)với mọi x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-\frac{1}{2}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)
KL: Mmin = \(\frac{-1}{4}\)<=> \(x=y=\frac{1}{2}\)
cảm ơn Giang