Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = 5 + |x - 0,5|
Ta có: M = 5 + |x - 0,5| > hoặc = 5
Dấu "=" xảy ra khi và chỉ khi x = 0,5
Vậy GTNN của M là 5 khi và chỉ khi x = 0,5
b) N = -3 - |x - 4|
Ta có: N = -3 - |x - 4| < hoặc = -3
Dấu "=" xảy ra khi và chỉ khi x = 4
Vậy GTLN của N là -3 khi và chỉ khi x = 4
a. \(M=5+\left|x-0,5\right|\) . Có:
\(\left|x-0,5\right|\ge0\)
\(\Rightarrow M=5+\left|x-0,5\right|\ge5\)
Dấu = xảy ra khi: \(x-0,5=0\Rightarrow x=0,5\)
Vậy: \(Min_M=5\) tại \(x=0,5\)
b. \(N=-3-\left|x-4\right|\) . Có:
\(\left|x-4\right|\ge0\)
\(\Rightarrow N=-3-\left|x-4\right|\le-3\)
Dấu = xảy ra khi: \(x-4=0\Rightarrow x=4\)
Vậy: \(Max_N=-3\) tại \(x=4\)
Áp dụng BĐT giá trị tuyệt đối: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Ta có:\(M=\left(\left|-x+1\right|+\left|x-3\right|\right)+\left|x-2\right|\ge\left|-x+1+x-3\right|+\left|x-2\right|=2+\left|x-2\right|\ge2\) với mọi x
Do đó MMin=2
\(M=2\Leftrightarrow\int^{\left(-x+1\right).\left(x-3\right)\ge0}_{x=2}\Leftrightarrow\int^{1\le x\le3}_{x=2}\Leftrightarrow x=2\)
Vậy MMin=2 tại x=2
Ta có : \(\left|x-\frac{2}{5}\right|\ge0;\left|x-\frac{3}{5}\right|\ge0\forall x\in R\)
=> \(\left|x-\frac{2}{5}\right|+\left|x-\frac{3}{5}\right|\ge0\)
Vì x ko thể đồng thời nhận hai giá trị
Nên GTNN của biểu thức là : \(\frac{1}{5}\) khi x = \(\frac{2}{5},\frac{3}{5}\)
vì |x-3| >=0 với mọi x
|5-x| >=0 với mọi x
=> |x-3| - |5-x| >=0 với mọi x
dấu '=' xảy ra <=> \(\hept{\begin{cases}\left|x-3\right|=0\\\left|5-x\right|=0\end{cases}}\) <=> \(\hept{\begin{cases}x-3=0\\5-x=0\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\x=5\end{cases}}\)(vô lý)
=>loại
Vậy GTNN của M = 0 <=> x \(\in\varnothing\)