\(\frac{x^2+16}{x+3}\) khi x\(\ge\) 0

 ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

Ta có : \(M=\frac{x^2+16}{x+3}=\frac{\left(x^2+6x+9\right)-6\left(x+3\right)+25}{x+3}=\frac{\left(x+3\right)^2-6\left(x+3\right)+25}{x+3}\)

\(=\left(x+3\right)+\frac{25}{x+3}-6=t+\frac{25}{t}-6\)với \(t=x+3>0\)

Áp dụng bđt Cauchy : \(t+\frac{25}{t}\ge2\sqrt{t.\frac{25}{t}}=10\Rightarrow M\ge4\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}t>0\\t=\frac{25}{t}\end{cases}\Leftrightarrow}t=5\Leftrightarrow x=2\)

Vậy M đạt giá trị nhỏ nhất bằng 4 tại x = 2

17 tháng 1 2018

hóng với ai biết làm chỉ công thức đê , cho chúa Pain  làm với :))

17 tháng 1 2018
mik gửi link qua rồi đó , nhận hàng đi
10 tháng 4 2020

Bn đăng bài lên xong nói mình làm được r thế đăng lên làm gì vậy bạn?

10 tháng 4 2020

Thì tự nhiên thông mimh ra,ai bt đc

8 tháng 6 2017

\(A=\frac{x^2+4y^2-3y^2}{xy}\ge\frac{2\sqrt{x^2.4y^2}}{xy}-\frac{3y}{x}\)

do x lớn hơn bằng 2y nên \(-\frac{3y}{x}\ge-\frac{3}{2}\)

Dấu = xảy ra khi và chỉ khi x=2y

21 tháng 5 2017

a, 3x + \(\frac{4}{x+1}\)=> 3x +  \(\frac{4}{x+1}\)

để BT thuộc GTNN thì x+1 thuộc U(4)

=> x+1=1(x >= - 1)

=> x= 0

21 tháng 5 2017

 b,  \(\frac{\text{x^2−8x+25}}{x}\)= (x-8)+\(\frac{25}{x}\)

=> (x-8) và 25/x min => x = 5