\(\frac{x+8}{\sqrt{x}+1}\)

kèm theo cách giải nha

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2016

\(A=\frac{x+8}{\sqrt{x}+1}\Rightarrow x+8-A\sqrt{x}-A=0\)
coi nó là pt bậc 2 ẩn x => tìm đc nhé bạn
Nếu k bạn chọn điểm rơi khi x=.. thì A min rồi lấy A- cho giá trị min
Gút lắc

31 tháng 8 2019

#)Góp ý :

Tham khảo : Câu hỏi của Trần Văn Quyết - Toán lớp 9 - Học toán với OnlineMath

Link : https://olm.vn/hoi-dap/detail/84624480607.html

31 tháng 8 2019

Link ảnh: https://i.imgur.com/3zkYCGa_d.jpg?maxwidth=640&shape=thumb&fidelity=medium

5 tháng 5 2019

sử dụng phương pháp miền giá trị

5 tháng 5 2019

bạn nói rõ hơn được không?

19 tháng 11 2016

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

19 tháng 11 2016

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé

2 tháng 8 2017

c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)

Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)

\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)

Đế C' nguyên thì a + 1 là ước của 1

\(\Rightarrow a=0\)

\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)

\(\Rightarrow x=\frac{9}{4}\left(l\right)\)

Vậy không có x.

Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks

2 tháng 8 2017

a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\frac{1}{3-2\sqrt{x}}\)

Câu b, c tự làm nhé

19 tháng 6 2017

a/ Căn xác định với \(2\le x< 3\) ta có \(\frac{\left(x-2\right)^2}{3-x}+\frac{x^2+1}{x-3}=0\)

<=> \(\frac{\left(x-2\right)^2}{3-x}-\frac{x^2+1}{3-x}=0\)<=> \(^{x^2-4x+4-x^2-1=0}\)<=> x = 3/4 ( Không TM ) Vậy PTVN 

19 tháng 6 2017

Bài 2:

*)GTNN: Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(A=\sqrt{x+3}+\sqrt{5-x}\)

\(\ge\sqrt{x+3+5-x}=\sqrt{8}\)

Đẳng thức xảy ra khi \(-3\le x\le5\)

*)GTLN:Áp dụng BĐT Cauchy-Schwarz ta có:

\(A^2=\left(\sqrt{x+3}+\sqrt{5-x}\right)^2\)

\(\le\left(1+1\right)\left(x+3+5-x\right)\)

\(=2\cdot8=16\)

\(\Rightarrow A^2\le16\Rightarrow A\le4\)

Đẳng thức xảy ra khi \(x=1\)