\(\frac{5x-4\sqrt{x}+1}{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

\(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\ne0\end{matrix}\right.\Leftrightarrow x>0\)

Ta có:

\(\frac{5x-4\sqrt{x}+1}{x}=\frac{x+4x-4\sqrt{x}+1}{x}=1+\frac{\left(2\sqrt{x}-1\right)^2}{x}\ge1\)(vì \(x>0\))

Dấu "=" xảy ra khi \(2\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(tm\right)\)

Vậy \(Min_{bt}=1\) khi \(x=\frac{1}{4}\)

10 tháng 8 2017

\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

b/ Để R<-1   => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)

<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)

<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)

10 tháng 8 2017

Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)   là sao vậy ạ?

2 tháng 4 2019

Vì \(\sqrt{x^2+4}>0\forall x\) Theo bđt Cô-si cho 2 số dương, ta có:

\(\sqrt{x^2+4}+\frac{1}{\sqrt{x^2+4}}=\frac{\sqrt{x^2+4}}{4}+\frac{1}{\sqrt{x^2+4}}+\frac{3\sqrt{x^2+4}}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi x=0