Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(3x-5\right)^2\ge0\forall x\); \(\left|3x-5\right|\ge0\forall x\)
\(\Rightarrow\left(3x-5\right)^2+6\left|3x-5\right|\ge0\forall x\)\(\Rightarrow\left(3x-5\right)^2+6\left|3x-5\right|+10\ge10\forall x\)
hay \(F\ge10\)
Dấu " = " xảy ra \(\Leftrightarrow3x-5=0\)\(\Leftrightarrow3x=5\)\(\Leftrightarrow x=\frac{5}{3}\)
Vậy \(minF=10\)\(\Leftrightarrow x=\frac{5}{3}\)
đặt |3x-5|= y ,ĐK : y >/ 0
F=y2-6y+10 đến đây đơn giản
ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)
câu F
chia khoảng cho nhàn: dẽ kiểm soát.
xét khi x<5/3
\(F=\left[\left(3x-5\right)^2+6\left(3x-5\right)+9\right]+1\)
\(F=\left[\left(3x-5\right)+3\right]^2+1\ge1\) đẳng thức khi \(3x-5+3=0\Rightarrow x=\dfrac{2}{3}< \dfrac{5}{3}\left(tmdk\right)\)
xét khi x>=5/3 Tương tự
\(F=\left[\left(3x-5\right)-3\right]+1\ge1\)
đẳng thức khia (3x-5)-3=0=> x=8/3 thủa mãn điều kiện
Kết luận: GTNN (F)=1 khi x=2/3 hoặc 8/3
câu I:
\(I=\dfrac{10x^2+41x+40}{x}\)
\(1-I=1-\dfrac{10x^2+41x+40}{x}=\dfrac{-\left(10x^2+40x+40\right)}{x}=\dfrac{-10\left(x+2\right)^2}{x}=A\)
Xem lại đề: khi x> không có GTLN;{sửa x<0}
\(\left\{{}\begin{matrix}x< 0\\A\ge0\end{matrix}\right.\) đẳng thức khi x=-2 \(\Rightarrow GTLN\left(I\right)\le1\)
Đặt \(\left|3x-1\right|=a\) nên \(A=a^2-4a+5\)
\(\Rightarrow A=\left(a^2-4a+4\right)+1=\left(a-2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)
Vậy \(A_{min}=1\) tại \(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)
Đặt \(\left|3x-1\right|=a\)nên \(A=a^2-4a+5\)
Biến đổi A ta được \(A=a^2-4a+4+1=\left(a-2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow a-2=0\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)
Vậy \(A_{min}=1\) tại \(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)
\(a.\left(2-3x\right)\left(x^2+2x+3\right)=0.\)
\(\left(2-3x\right)=0\)
\(\left(x^2+2x+3\right)=0\)
\(TH1:2-3x=0\Leftrightarrow x=\frac{-2}{-3}\)
\(TH2:x^2+2x+3=0\Leftrightarrow\left(x^2+2x+1\right)+3\Leftrightarrow\left(x+1\right)^2+3>0\)
b) \(3x-3x=5+2\) ( vô nghiệm)
c) vô nghiệm
d-\(x^2-5x-6=0\Leftrightarrow\left(x^2-x\right)+\left(6x-6\right)\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
vậy ...
x=1
x=-6
E) \(\frac{2\left(x-3\right)^2}{3}=\frac{3x^2}{2}\) quy đồng khử mẫu ta được
\(4\left(x-3\right)^2-9x^2=0\Leftrightarrow4\left(x-3\right)^2-\frac{4.1.9x^2}{4}\) rút 4 ta được
\(4\left\{\left(x-3\right)^2-\frac{9x^2}{4}\right\}=0\Leftrightarrow4\left\{\left(x-3\right)^2-\left(\frac{3}{2}x\right)^2\right\}\Leftrightarrow4\left(x-3+\frac{3}{2}x\right)\left(x-3-\frac{3}{2}x\right)=0\) ( hằng đẳng thức số 3 )
tích = 0
vậy ....
F) trị tuyệt đối + bình phương của 1 số thực luôn lớn hơn hoặc = 0( định lí Pain)
phá trị tuyệt đối ta được
\(\left(x+5\right)^2-\left(3x-2\right)^2=0\)
\(\left(x+5-3x-2\right)\left(x+5+3x-2\right)=0\) ( hẳng đẳng thức số 3 )
tích = 0 suy ra 2 TH vậy .....
g) câu G bạn lên coccoc math bạn ghi là nó ra kết quả phân tích thành nhân tử chứ làm = tay vừa dài vừa hại não :)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24=0\)
\(x\left(x-5\right)x\left(x^2-5x+10\right)=0\) ( coccoc math)
\(\left(x^2-5x+10\right)=0\Leftrightarrow\left(x^2-\frac{2x.5}{2}+\left(\frac{5}{2}\right)^2\right)+10-\frac{25}{4}=0\) ( 10-25/4) = 15/4
\(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\) ( vô nghiệm)
vậy....
a) \(A=\dfrac{\left(-2\right)^5}{\left(-2\right)^3}=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)
b) \(y\ne0:B=\dfrac{\left(-y\right)^7}{\left(-y\right)^3}=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)
c) \(x\ne0:C=\dfrac{\left(x\right)^{12}}{\left(-x\right)^{10}}=\left(x\right)^{12-10}=\left(x\right)^2=x^4\)
d) \(x\ne0:D=\dfrac{2x^6}{\left(2x\right)^3}=\dfrac{2x^6}{8x^3}=\dfrac{1}{4}\left(x\right)^{6-3}=\dfrac{1}{4}\left(x\right)^3\)
e) \(x\ne0:E=\dfrac{\left(-3x\right)^5}{\left(-3x\right)^2}=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)
f) \(x,y\ne0:F=\dfrac{\left(xy^2\right)^4}{\left(xy^2\right)^2}=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)
i) \(x\ne-2:I=\dfrac{\left(x+2\right)^9}{\left(x+2\right)^6}=\left(x+2\right)^{9-6}=\left(x+2\right)^3\)
a) \(\frac{7x}{8}-5\left(x-9\right)=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-\frac{40\left(x-9\right)}{8}=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-\frac{40x-360}{8}=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{360-33x}{8}=\frac{20x+1,5}{6}\)
\(\Leftrightarrow2160-198x=160x+12\)
\(\Leftrightarrow358x=2148\)
\(\Leftrightarrow x=6\)
Vậy nghiệm của pt x=6
b) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
\(\Leftrightarrow\frac{10\left(x-1\right)+4}{12}-\frac{21x-3}{12}=\frac{4x+2}{7}-\frac{35}{7}\)
\(\Leftrightarrow\frac{-11x-3}{12}=\frac{4x-33}{7}\)
\(\Leftrightarrow-77x-21=48x-396\)
\(\Leftrightarrow125x=375\)
\(\Leftrightarrow3\)
Vậy nghiệm của pt x=3
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
Tìm GTNN của
F=(3x−5)2−6|3x−5|+10
F=(3x-5)2-6|3x-5|+10>=10
MinF=10<=>{3x-5.2=0->3x-10=0=>vô hạn
{6|3x-5|=0->18x-5=0=>0,27
o l m . v n