Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn cứ xét mẫu là được
mẫu của chúng luôn luôn > hoặc = 0
chỉ cần xét tử thôi nha bạn
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
\(=2x-\frac{2.3}{2\sqrt{2}}.\sqrt{2x}+\frac{9}{8}+\frac{23}{8}\)
\(=\left(\sqrt{2x}-\frac{3\sqrt{2}}{2}\right)^2+\frac{23}{8}\ge\frac{23}{8}\)
=> GTNN của BT là 23/8
Ta có
\(A=x^2-\frac{x}{3}+\frac{1}{27x}+2016\)
\(=\left(x^2-\frac{2x}{3}+\frac{1}{9}\right)+\left(\frac{x}{3}-\frac{2}{9}+\frac{1}{27x}\right)+2016-\frac{1}{9}+\frac{2}{9}\)
\(=\left(x-\frac{1}{3}\right)^2+\left(\frac{\sqrt{x}}{\sqrt{3}}-\frac{1}{3\sqrt{3x}}\right)^2+\frac{18145}{9}\)
\(\ge\frac{18145}{9}\)
Dấu = xảy ra khi \(x=\frac{1}{3}\)
PS: Lần sau đừng chép đề thiếu nữa nha bạn :(
Ta có : \(-x^2+2x-4\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)\(\le-3\forall x\)
\(\Rightarrow E=\frac{3}{-x^2+2x-4}\)\(\ge\frac{3}{-3}=-1\forall x\)
\(E=-1\Leftrightarrow-\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy \(MinE=-1\Leftrightarrow x=1\)
từ đề = |x+1| + |x-1| (1)
+/ nếu x >1 thì x-1>0 và x+1>0
suy ra (1)=2x mà x>1 nên (1) > 2
+/ nếu -1>=x>=1 thì x-1<=0 và x+1>=0
suy ra (1)=2
+/ nếu x<1 thì x-1 và x+1 bé hơn hoặc bằng 2
suy ra (1)=-2x
mà x<1 nên (1)>2
vậy MIN=2 <=> -1<=x<=1
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(=\left|x+1\right| +\left|1-x\right|\ge\left|x+1+1-x\right|=2\)
Vậy giá trị nhỏ nhất bằng 2, với \(-1\le x\le1\)
\(E=\frac{3}{-x^2+2x+4}\)
\(E=\frac{-3}{\left(x^2-2x+1\right)-5}\)
\(E=\frac{-3}{\left(x-1\right)^2-5}\ge\frac{-3}{-5}=\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(E\) là \(\frac{3}{5}\) khi \(x=1\)
Chúc bạn học tốt ~