Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(D=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)
\(=-3\left[\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\right]-7=-3\left(x+\frac{3}{2}\right)^2+\frac{27}{4}-7=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\) < \(-\frac{1}{4}\)
Dấu "=" xảy ra <=> \(-3\left(x+\frac{3}{2}\right)^2=0< =>x=-\frac{3}{2}\)
Vậy maxD=-1/4 khi x=-3/2
a,\(A=x^2-3x+5=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}+\dfrac{11}{4}=\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Do \(\left(x-\dfrac{3}{2}\right)^2\ge0\left(\forall x\right)\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\left(\forall x\right)\)
Daau "=" xảy ra \(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Vaay \(MinA=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b,\(B=2x-x^2=-\left(x^2-2x\right)=-\left(x^2-2x+1-1\right)\)
\(=-\left(x-1\right)^2+1=1-\left(x-1\right)^2\)
Do \(-\left(x-1\right)^2\le0\Rightarrow1-\left(x-1\right)^2\le1\left(\forall x\right)\)
Dau "=" xay ra \(\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vay \(MaxA=1\Leftrightarrow x=1\)
Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4
Vì \(\left(x-1\right)^2\ge0\forall x\)
Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)
Nên : Pmin = 4 khi x = 1
b) Ta có Q = 2x2 - 6x = 2(x2 - 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)
Bài 1:
a)x2-10x+9
=x2-x-9x+9
=x(x-1)-9(x-1)
=(x-9)(x-1)
b)x2-2x-15
=x2+3x-5x-15
=x(x+3)-5(x+3)
=(x-5)(x+3)
c)3x2-7x+2
=3x2-x-6x+2
=x(3x-1)-2(3x-1)
=(x-2)(3x-1)x^3-12+x^2
d)x3-12+x2
=x3+3x2+6x-2x2-6x-12
=x(x2+3x+6)-2(x2+3x+6)
=(x-2)(x2+3x+6)
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
a,Ta có :\(A=x\left(x-6\right)=x^2-6x\)
\(=x^2-6x+9-9\)
\(=\left(x-3\right)^2-9\)
Vì: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\)\(\left(x-3\right)^2-9\ge-9\forall x\)
Hay: \(A\ge-9\forall x\)
Dấu = xảy ra khi (x-3)^2=0
<=>x=3
Vậy Min A= -9 tại x=3
b,Ta có: \(B=-3x\left(x+3\right)-7\)
\(=-3x^2-9x-7\)
\(=-3\left(x^2+3x+\frac{7}{3}\right)\)
\(=-3\left[\left(x^2+3x+\frac{9}{4}\right)+\frac{1}{12}\right]\)
\(=-3\left[\left(x+\frac{3}{2}\right)^2+\frac{1}{12}\right]\)
\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)
Vì: \(-3\left(x+\frac{3}{2}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le\frac{-1}{4}\forall x\)
Hay \(B\le\frac{-1}{4}\forall x\)
Dấu = xảy ra khi \(-3\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy Max B=-1/4 tại x=-3/2
a) \(A=x\left(x-6\right)=x^2-6x+9-9=\left(x-3\right)^2-9\ge-9\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=3\)
Vậy Min A = -9 khi x = 3
b) \(B=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+9x+20,25\right)+53,75\)
\(=-3\left(x+4,5\right)^2+53,75\le53,75\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-4,5\)
Vậy Max B = 53,75 khi x = -4,5