\(a^2\)+ \(b^2\)với a>0, b>0 và a+b=2<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

áp dụng bđt bunhiacopxki 

(a^2+b^2)(1^2+1^2) >= (a.1+b.1)^2 = (a+b)^2=4

=>a^2+b^2 >= 4/2=2 

dấu "=" xảy ra <=> a=b,mà a+b=2=>a=b=1

Vậy minD=2 khi a=b=1

4 tháng 5 2020

Ta có:

\(Q=\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}=\frac{4}{10}\)

Đẳng thức xảy ra tại \(a=b=\sqrt{5}\)

21 tháng 7 2018

\(4=\left(a+b+c+d\right)^2\ge4\left(a+b+c\right).d\)

\(\Rightarrow1\ge\left(a+b+c\right).d\)

\(\Rightarrow a+b+c\ge\left(a+b+c\right)^2d\ge4\left(a+b\right).c.d\)

\(\Rightarrow A=\frac{\left(a+b+c\right)\left(a+b\right)}{abcd}\ge\frac{4\left(a+b\right)^2.cd}{abcd}\ge\frac{16ab.cd}{abcd}=16\)

Nên GTNN của A là 16 đạt được khi  \(a=b=\frac{1}{4};c=\frac{1}{2};d=1\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

13 tháng 7 2017

anh nên lên học 24h để được giả đáp tốt hơn !!

7 tháng 9 2018

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}+\frac{1}{2ab+2bc+2ca}\)+2ca

Do a,b,c dương nên ADBĐT Cauchy ta được:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}\ge\frac{4}{(a+b+c)^2}=4\)

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow2ab+2bc+2ca\le\frac{2}{3}\)\(\Rightarrow\frac{1}{2ab+2bc+2ca}\ge\frac{3}{2}\)

Suy ra P\(\ge4+\frac{3}{2}=\frac{11}{2}\)

Dấu = khi a=b=c=\(\frac{1}{3}\)