K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

\(C=\left(2x+1\right)\left(x-5\right)\)

\(=2x^2-9x-5\)

=\(2.\left(x^2-\frac{9}{2}x-\frac{5}{2}\right)\)

\(=2.\left(x^2-2.x.\frac{9}{4}+\frac{81}{16}-\frac{81}{16}\right)\)

\(=2.\left[\left(x-\frac{9}{4}\right)^2-\frac{81}{16}\right]\)

\(=2.\left(x-\frac{9}{4}\right)^2-\frac{81}{8}\)

Ta có: \(2\left(x-\frac{9}{4}\right)^2\ge0\) với mọi x

\(2\left(x-\frac{9}{4}\right)^2-\frac{81}{8}\ge\frac{-81}{8}\)

hay \(C\ge\frac{-81}{8}\)

- Dấu " = " xảy ra khi và chỉ khi: \(x-\frac{9}{4}=0\Leftrightarrow x=\frac{9}{4}\)

Vậy GTNN của \(C=\frac{-81}{4}\)<=> \(x=\frac{9}{4}\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

A = |x-7| + |x-5| = |7-x| + |x-5| ≥ |7-x + x-5| = 2 

minA = 2 
đạt khi 7-x và x-5 cùng dấu <=> (7-x)(x-5) ≥ 0 <=> 5 ≤ x ≤ 7 

B = (2x-1)² - 3|2x-1| + 2 = |2x-1|² - 2.|2x-1|.(3/2) + 9/4 + 2 - 9/4 

B = (|2x-1| - 3/2)² - 1/4 ≥ -1/4 

minB = -1/4 
đạt khi: |2x-1| = 3/2 <=> 2x-1 = 3/2 hoặc 2x-1 = -3/2 <=> x = 5/4 hoặc x = -1/4 

C = |x² + x + 1| + |x² + x -12| = |x² + x + 1| + |12 - x² - x | ≥ 

≥ |x² + x + 1 + 12 - x² - x| = |13| = 13 

minC = 13 

đạt khi (x² + x +1) và (12 - x² - x) cùng dấu 
<=> (x²+x+1)(12-x²-x) ≥ 0 <=> -1 ≤ x²+x ≤ 12 <=> 
{x² + x + 1 ≥ 0 
{x² + x -12 ≤ 0 
<=> 
(x + 4)(x - 3) ≤ 0 <=> -4 ≤ x ≤ 3 
tóm lại: 
minC = 13 đạt khi -4 ≤ x ≤ 3 

học tốt

8 tháng 8 2017

\(C=\left(2x+1\right)\left(x-5\right)=2x^2-9x-5\)

\(=2\left(x^2-2.\frac{9}{4}x+\frac{9^2}{4^2}\right)-5-2.\frac{9^2}{4^2}\)

\(=2\left(x-\frac{9}{4}\right)^2-\frac{121}{8}\ge-\frac{121}{8}\)

Dấu bằng xảy ra khi x = 9/4.

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

12 tháng 8 2016

làm giúp 1 câu ,bn muốn làm câu nào? cho biết

13 tháng 8 2016

B=(2x+1).(2x-3)-4