K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

\(A=9x^2+18x-20\)

\(\Leftrightarrow A=\left(3x\right)^2+2.3x.3+9-29\)

\(\Leftrightarrow A=\left(3x+3\right)^2-29\le-29\forall x\)

Dấu " = " xảy ra

\(\Leftrightarrow\left(3x+3\right)^2=0\Leftrightarrow3x+3=0\Leftrightarrow3x=-3\Leftrightarrow x=-1\)

Vậy Min A là : \(-29\Leftrightarrow x=-1\)

\(B=m^2+10m+1\)

\(\Leftrightarrow B=m^2+2.m.5+25-24\)

\(\Leftrightarrow B=\left(m+5\right)^2-24\le-24\forall m\)

Dấu \("="\) xảy ra

\(\Leftrightarrow\left(m+5\right)^2=0\Leftrightarrow m+5=0\Leftrightarrow m=-5\)

Vậy Min B là : -24 \(\Leftrightarrow m=-5\)

\(C=25x^2-20x+30\)

\(\Leftrightarrow C=\left(5x\right)^2-2.5x.2+4+26\)

\(\Leftrightarrow C=\left(5x-2\right)^2+26\le26\forall x\)

Dấu " = " xảy ra

\(\Leftrightarrow\left(5x-2\right)^2=0\Leftrightarrow5x-2=0\Leftrightarrow5x=2\Leftrightarrow x=\dfrac{2}{5}\)

Vậy Min C là : 26 \(\Leftrightarrow x=\dfrac{2}{5}\)

19 tháng 8 2018

có đúng k ?

GTNN mà

26 tháng 6 2017

a)Đặt \(A=3x^2-x+1\)

          \(A=3\left(x^2-2.\frac{1}{6}x+\frac{1}{36}\right)+\frac{11}{12}\)

            \(A=3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\)

                   Vì \(3\left(x-\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)

Dấu = xảy ra khi \(x-\frac{1}{6}=0\Rightarrow x=\frac{1}{6}\)

         Vậy Min A = \(\frac{11}{12}\) khi x=1/6

b)Tương tụ

29 tháng 6 2019

a/ 9x2-12xy+4y2 = (3x - 2y)2

b/ 25x2-10x+1 = (5x - 1)2

c/ 9x2-12x+4 = (3x - 2)2

d/ 4x2+20x+25 = (2x + 5)2

e/ x4-4x2+4 = (x- 2)2

29 tháng 6 2019

a/\(\left(3x-2y\right)^2\)

b/\(\left(5x-1\right)^2\)

c/\(\left(3x-2\right)^2\)

d/\(\left(2x+5\right)^2\)

e/\(\left(x-2\right)^2\)

12 tháng 7 2016

a) \(S=25x^2-20x+7=\left[\left(5x\right)^2-2.5x.2+4\right]+3=\left(5x-2\right)^2+3>0\) với mọi x

b) \(P=9x^2-6xy+2y^2+1=\left[\left(3x\right)^2-2.3x.y+y^2\right]+y^2+1=\left(3x-y\right)^2+y^2+1>0\)với mọi x

12 tháng 7 2016

25x2  - 20x + 7 = ( 25x2 - 20x + 4 ) + 3 = (5x-2)2 + 3 > 0

còn câu b, P = 9x2 - 6xy + 2y2 + 1 = (3x-y)2 + y2 + 1 >0

28 tháng 2 2018

b. sửa đề

\(6x^4+25x^3+12x-25x^2+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy........

28 tháng 2 2018

Bài 1 : Giải phương trình

a) (x + 3)4 + (x + 5)4 = 16

Đặt : x + 3 = t

=> x + 5 = x + 3 + 2 = t + 2

Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :

t4 + (t + 2)4 = 16

<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16

<=> 2(t4 + 4t3 + 12t2 + 16t) = 0

<=> t4 + 4t3 + 12t2 + 16t = 0

<=> (t + 2) . t . (t2 + 2y + 4) = 0

TH1 : t = 0

TH2 : t + 2 = 0 <=> t = -2

TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)

Nên t = 0 hoặc t = -2

hay x + 3 = -2 hoặc x + 3 = 0

<=> x = -5 hoặc x = -3

\(S=\left\{-5;-3\right\}\)

b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0

<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0

<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0

<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0

<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0

\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)

<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0

<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0

TH1 : x + 2 = 0 <=> x = -2

TH2 : x + 3 = 0 <=> x = -3

TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)

TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)

\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)

22 tháng 7 2017

\(=\left(x^2-2.x.2-4\right)-4\)

=\(^{\left(x-2\right)^2-4}\)

vậy GTNN =-4 tại x=2

22 tháng 7 2017

mới học nên thông cảm

a, A= x^2-10x+5

\(=x^2-2.5x+25-20\\ =\left(x-5\right)^2-20\ge20\)

Dấu = xảy ra khi x-5=0 <=> x=5

b.

b, B= 9^2-30x+4

\(=\left(3x\right)^2-2.3x.5+25-21\\ =\left(3x-5\right)^2-21\ge-21\)

Dấu = xảu ra khi \(x=\dfrac{5}{3}\)

c.C= 3x^+12x-1

\(< =>3C=9x^2+36x-3\\ =\left(3x+6\right)^2-39\ge-39\)

\(=>A\ge-13\)

Dấu = xảy ra khi x=-2

d.Tương tụ câu c (nhân 2 lên)

Đúng thì tích ' Đúng' mk với

12 tháng 9 2017

a, A=x2-10x+5

=(x-5)2-20

Do (x-5)2>hoặc=0 vs mọi x=>(x-5)2-20>hoặc=-20 vs mọi x

Dấu'=' xảy ra khi :(x-5)2=0=>x-5=0=>x=5

Vậy Amax=-20 khi x=5

b,TƯƠNG TỰ

Bmax=21 khi x=\(\dfrac{5}{3}\)

c,TƯƠNG TỰ

Cmax=13 khi x=-2

d,Tớ ko bt lmbucminh

12 tháng 9 2017

Max là GTLN . Nhưng đề bài kêu tìm GTNN thì dùng Min nhé

5 tháng 7 2017

Ta có : 9x2 + 12x + 15

= (3x)2 + 2.3x.2 + 4 + 11

= (3x + 2)2 + 11

Mà (3x + 2)2 \(\ge0\forall x\)

Nên (3x + 2)2 + 11 \(\ge11\forall x\)

Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

5 tháng 7 2017

Ta có : A = x2 - 4x - 6 

= x2 - 4x + 4 - 10

= (x - 2)2 - 10

Mà (x - 2)\(\ge0\forall x\)

=> (x - 2)2 - 10 \(\ge-10\forall x\)

Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2